В современной авиационной технике наряду с топливами и смазками находят широкое применение гидравлические масла. Одновременно с ростом потребности в гидравлических маслах повышаются требования к их качеству, наиболее важными из которых являются температурные и вязкостные характеристики. Если температурные характеристики масел обусловлены природой базового масла, вязкостные свойства корректируются добавлением загущающих присадок [1]. В составе товарных гидравлических масел в качестве загущающих присадок используют полиалкилметакрилаты (ПАМА), растворенные в нефтяных базовых маслах.
Существующий порядок оценки соответствия продукции (топлив, масел, смазок, специальных жидкостей, консервационных материалов и присадок) требованиям нормативной документации предусматривает проведение комплекса мероприятий по идентификации для установления тождественности продукции ее наименованию и другим характерным признакам [2]. Составной частью таких мероприятий является контроль над неизменностью компонентного состава продукции в течение всего периода ее производства и хранения. Применительно к гидравлическим маслам одним из способов такого контроля является проведение определения наличия и концентрации в нём присадок.
Целью данной работы являлась разработка методов идентификации (компонентного соответствия), а также количественного определения присадки «Максойл В3-011» в составе гидравлического масла.
Материалы и методы исследования
Метод ИК-спектроскопии
Исследование проводили на ИК-Фурье-спектрометре «Nicolet-670» (фирмы «Thermo Electron Сorporation», США) в диапазоне волновых чисел 4000–400 см-1, разрешающей способностью 1 см-1. Сканирование ИК-спектров проб осуществляли с использованием абсорбционной кюветы с толщиной поглощающего слоя 0,1 мм с окнами из бромида калия (KBr). Обработку данных проводили в программном обеспечении «TQ Analyst».
Метод ВЭЖХ – ГПХ
Хроматографирование проводили на высокоэффективном жидкостном хроматографе «Flexar» (PerkinElmer, США), способном прокачивать подвижную фазу через колонку со скоростью 0,5–1,5 мл·мин-1 и обеспечивающем (в указанных условиях) точность не менее 0,5 %. Способ детектирования – рефрактометрический. Для разделения проб присадок использовали эксклюзионные колонки «MesoPore» (Agilent Technologies, США), Length/I/D 300х7,5 mm, содержащие частицы размером 3 мкм, с внутренним диаметром пор 2–50 нм. В качестве элюента и растворителя использовали тетрагидрофуран с чистотой для хроматографирования (99,5 %+). Обработку данных проводили в программном обеспечении Totalchrom. Для калибровки применяли узкодисперсные стандарты полистирола. Перерасчет значений молекулярной массы (ММ) стандартов полистирола к сополимерам ПАМА проводили по коэффициентам для полиоктил(мет)акрилата [3] по стандартным формулам [4].
Параметры метода: Скорость потока растворителя – 0,8 мл/мин изократический режим, объём пробы – 10 мкл с предварительным десятикратным разбавлением ТГФ, температура печи и рефрактометрического детектора – 35 °С.
Результаты исследования и их обсуждение
Основным компонентом присадки «Максойл В3-011» является полиалкилметакрилат (рис. 1) – продукт полимеризации алкилметакрилатов, которые в свою очередь получают этерификацией метакриловой кислоты спиртами [5].
Согласно техническим требованиям, условная молекулярная масса полиалкилметакрилата в присадке должна находится в диапазоне от 5000 до 12000 а.е.м. и иметь линейные алкильные заместители в сложноэфирных группах состава С12-С18.
Рис. 1. Мономерное звено полиалкилметакрилатной присадки «Максойл В3-011»
Концентрация присадки в гидравлических маслах составляет 12–15 % мас., при этом концентрация основного компонента (полиалкилметакрилата) в присадке составляет 55 %.
Для исследования состава, идентификации и определения концентрации соединений полимерной природы в настоящее время находят широкое применение методы ИК-спектроскопии и ВЭЖХ – ГПХ. В настоящей работе разработаны методы, позволяющие проводить количественные определения присадки «Максойл В3-011» в матрице гидравлического масла без дополнительной трудоемкой пробоподготовки с высокой точностью.
ИК-спектроскопия
Как видно из рис. 1, в структурной формуле полиалкилметакрилата присутствует сложноэфирный фрагмент, при этом валентные колебания С=О являются характеристичными и находятся в области 1724–1737 см-1 [6]. На рис. 2, а–в, приведены следующие ИК-спектры: присадки «Максойл-В3-001» (рис. 2, а), основы гидравлического масла (рис. 2, б) и базового масла, содержащего 15 % присадки «Максойл В3-011» (рис 2, в). Как видно из рис. 2, а, на ИК-спектре присадки присутствует характеристический пик в области валентных колебаний (С=О) эфирной группы при 1731 см-1. При этом характеристичные колебания С=О в сложноэфирной группе не перекрываются с другими колебаниями как самого полиалкилметакрилата, так и компонентами гидравлического масла (рис. 2, б).
Расчет массовой доли присадки проводили по высоте пика на волновом числе 1731 см-1 с базовой линией, построенной параллельно оси абсцисс из точки на спектре, соответствующей волновому числу 1653 см-1. ИК-спектров присадки «Максойл В3-011» с концентрациями 9, 12 и 15 % мас.
Для проведения количественного определения присадки «Максойл В3-011» в гидравлическом масле были приготовлены градуировочные растворы с концентрациями 10, 12,14 и 15 % мас. присадки в основе масла АМГ-10.
а)
б)
в)
Рис. 2. а) ИК-спектр присадки «Максойл-В3-001», б) ИК-спектр основы гидравлического масла, в) ИК-спектр базового масла, содержащего 15 % присадки «Максойл В3-011»
Сходимость результатов определения содержания присадки «Максойл ВЗ-011» в масле АМГ-10
Параметры |
Содержание присадки, % мас. |
||||
10 |
12 |
14 |
15 |
||
Номер образца |
1 |
9,876 |
12,119 |
14,244 |
15,045 |
2 |
9,801 |
12,112 |
14,226 |
15,385 |
|
3 |
9,85 |
12,123 |
14,208 |
15,392 |
|
4 |
9,788 |
12,009 |
14,301 |
15,402 |
|
5 |
9,838 |
12,042 |
14,052 |
15,386 |
|
6 |
9,838 |
12,061 |
14,259 |
15,43 |
|
7 |
9,82 |
11,923 |
14,081 |
15,526 |
|
8 |
9,783 |
12,065 |
14,176 |
15,301 |
|
9 |
9,815 |
12,068 |
14,162 |
15,257 |
|
10 |
9,88 |
12,063 |
14,331 |
15,373 |
|
Среднее значение, хср, % |
11 |
9,8289 |
12,059 |
14,204 |
15,35 |
Среднее квадратичное, S |
12 |
0,0338 |
0,0596 |
0,0891 |
0,1287 |
Коэффициент Стьюдента |
13 |
2,262 |
2,262 |
2,262 |
2,262 |
Сходимость, % |
14 |
0,1 |
0,2 |
0,3 |
0,4 |
В таблице приведены данные метрологической экспертизы четырех растворов присадки марки «Максойл ВЗ-011» в основе гидравлического масла АМГ-10 с содержанием 10, 12, 14 и 15 % мас. Было выполнено 10 параллельных определений (строки 1–10 в таблице) и рассчитаны среднее квадратичное отклонение и сходимость (абсолютное значение) результатов.
Таким образом, на основе данных ИК-спектроскопии возможно установление идентичности присадки «Максойл ВЗ-011», присутствующей в гидравлических маслах, по характеристичной полосе поглощения (1730 см-1), а также определение ее содержания в диапазоне концентраций нормируемых техническими условиями производителя.
ВЭЖХ
Высокоэффективная жидкостная хроматография в варианте гель-проникающей хроматографии (ВЭЖХ – ГПХ) находит широкое применение для определения молекулярно-массового распределения (ММР) полимеров, установления содержания примесей и исходных низкомолекулярных соединений в полимерной матрице [7]. Разделение молекулы пробы происходит по их гидродинамическому объёму или по эффективной величине молекулы в растворе, при этом возможно разделение смеси компонентов, отличие молекулярных масс которых составляет 10 %.
В работах [8, 9] авторы определяли ММР чистого полиалкилметакрилата с использованием ВЭЖХ на установке с набором из 5 стирогелевых колонок с диаметром пор 105, 3х104, 104, 103 и 250 A. Поскольку присадка «Максойл В3-011» представляет собой полимер с молекулярной массой значительно большей, чем у основы масла и других компонентов товарного продукта, для отделения полиалкилметакрилата от остальных компонентов масла в нашей работе был использован комплекс из двух колонок и предколонки, с частицами размером 3 мкм и внутренним диаметр пор 2–50 нм, обеспечивающим разделение согласно данным производителя в диапазоне от 900 до 25000 Да. На рис. 3, а–в, приведены полученные хроматограммы основы гидравлического масла, присадки «Максойл-В3-011» и гидравлического масла, содержащего присадку «Максойл-В3-011».
Как видно из рис. 3, а–в, подобранные условия обеспечивают оптимальные условия отделения полиалкилметакрилата в присадке «Максойл-В3-001» от остальных компонентов гидравлического масла, которые выходят в виде уширенного пика и характеризуются максимумом временеми удерживания 12 минут, а время удерживания полиалкилметакрилата составляет 7 минут, при этом ММР полиалкилметакрилата составило порядка 7500 Да.
Метрологическая экспертиза проведена на растворах гидравлического масла АМГ-10 с концентрациями 5, 10, 15 и 20 % мас., с тремя параллельными определениями. Средняя квадратичная ошибка в определении площади пика (σ) в параллельных опытах составила ± 1,5 отн. %.
а)
б)
в)
Рис. 3. а) хроматограмма основы масла АМГ-10 (время удерживания), б) хроматограмма присадки Максойл-В3-011 с концентрацией 1 % в растворе тетрагидрофурана, в) хроматограмма гидравлического масла АМГ-10, содержащего 16,0 % мсс. присадки «Максойл-В3-011»
Таким образом, полученные результаты свидетельствуют о возможности применения ВЭЖХ для идентификации присадки «Максойл В3-011», входящей в состав гидравлических масел и определения средней молекулярной массы ПАМА на соответствие/несоответствие заявленной производителем.
Заключение
Разработанные методы позволяют определять массовую долю и молекулярно-массовое распределение присадки «Максойл В3-01» в гидравлических маслах, в частности масла АМГ-10, без дополнительной пробоподготовки.
Показано, что данные, полученные при одновременном применении методов ИК-спектроскопии и ВЭЖХ для исследования полимерных присадок, входящих в состав гидравлических масел, дают более полное представление об идентичности и ММР основного компонента присадки «Максойл В3-001» – полиалкилметакрилата, что в свою очередь позволяет характеризовать соответствие состава масла заявленному производителем.