В последние годы все больше стало появляться данных, свидетельствующих о том, что решающее воздействие на эволюцию антибиотикорезистентности патогенных бактерий оказывают конъюгативные транспозоны и SXT элементы, которые в начале 21 века были объединены в большой класс интегративных конъюгативных элементов (Integrative Conjugative Element – ICE) [26]. ICE не являются самостоятельными репликонами, но способны, подобно профагам, размещаться в хромосоме, вырезаться из нее, а главное, переноситься в другие клетки через систему конъюгации. Кроме собственного переноса, ICE способны мобилизовать неконъюгативные плазмиды и геномные острова in trans, обеспечивая альтернативные механизмы для горизонтального переноса генов антибиотикорезистентности [21]. Возможность переноса детерминант антибиотикорезистентности среди филогенетически отдаленных бактерий природной микробиоты человека и животных была выявлена разными группами исследователей. Для грамотрицательных анаэробных бактерий в лабораторных условиях было показано, что транспозоны TcrEmr12256 и TcrEmr7853 могут переносить гены резистентности к тетрациклину и эритромицину между Bacteroides и Prevotella [3]. Гены tetM, tetW, ermB и ermG довольно часто обнаруживают у Firmicutes, а гены tetQ и ermF у Bacteroidetes. Среди Bacteroides гены резистентности к эритромицину ermB и ermG переносятся конъюгативными транспозонами CTnBST и TcrEmr 7853 или CTnGERM1, соответственно. Последовательности ДНК генов ermG, обнаруженные в клинических изолятах Bacteroides, на 99 % идентичны последовательностям ДНК гена Bacillus sphaericus [21]. Установлено, что перенос гена tetM между клиническими изолятами Clostridium difficile и Enterococcus spp. и похожий перенос от Clostridium difficile 630 к бактериям Bacillus subtilis и Enterococcus faecalis осуществлялся посредством конъюгативного транспозона Tn5397 [16]. Анализ современной литературы, посвященной структурно-функциональной организации ICE позволил в данном обзоре обобщить в справочной форме сведения о роли конъюгативных транспозонов в возникновении мозаичной структуры геномов современных видов и штаммов бактерий – возбудителей инфекций с множественной лекарственной устойчивостью.
В начале 1950-х годов большинство комменсальных и патогенных бактерий были восприимчивы к тетрациклину, только 2 % бактерий из коллекции Enterobacteriaceae, собранной между 1917 и 1954 годами, были устойчивы к этому антибиотику [14]. В настоящий момент известно более 40 генов резистентности к тетрациклину и обычно они ассоциируются с мобильными генетическими элементами. В бактериях резистентность к тетрациклину опосредуется преимущественно через два механизма: рибосомальную защиту (гены otrA, tetB(P), tetM, tetO, tetQ, tetS, tetT, tetW) и эффлюкс-систему (гены otrB, otrC, tetA, tetB, tetC, tetD, tetE, tetG, tetH, tetJ, tetK, tetL, tetV, tetY, tetZ). Эффлюкс гены грамотрицательных бактерий часто ассоциируются с конъюгативными плазмидами, в то время как в грамположительных бактериях эффлюкс гены часто обнаруживают на небольших мобилизуемых плазмидах или хромосоме. Недавно описаны мозаичные тетрациклин-резистентные гены (tet(O/W), tet(O/W/O), tet(O/32/O), tet(O/W/32/O), tet(O/W/32/O/W/O)), в которых части гена резистентности к тетрациклину (Tcr) получены при рекомбинации двух или более различных классов генов [17]. Конъюгативные транспозоны (Tn, CTn) являются основным источником распространения тетрациклинрезистентных генов: tetM – Tn916, Tn5253, Tn5397, Tn5801, Tn6003, Tn2010, Tn6086, Tn6087; tetO – Tn5252; tetS – Tn6000, Tn916S; tetQ – CTnDOT, CTn7853, CTn341; tetW – TnB1230 [4]. Ранее было установлено, что аминокислотная последовательность белка TetQ лишь на 40 % идентична TetM или TetO, сходство последовательностей которых превышает 75 % [22]. Недавно проведенный филогенетический анализ гена tetM у стафилококков позволил выделить три группы конъюгативных транспозонов, ассоциированных с tetM: группа I – Tn5397; группа II – Tn916 и Tn5801; группа III Tn1545, Tn2009 и Tn5251 [9]. Мозаичные структуры гена tetM, полученные в результате рекомбинации tetM разных групп, были описаны в ряде работ [1, 15]. Обнаружение tetS в позициях, соответствующих tetM в Tn916-подобных элементах широкого круга бактерий подтверждает предположение о том, что конъюгативные транспозоны формируют модули, которые при гомологичной рекомбинации способны к обмену с модулями других элементов [25].
Гены, отвечающие за резистентность к тетрациклину регулируются разными путями [34]. Например, экспрессия гена tetM происходит под контролем механизма аттенюации транскрипции [31]. Транскрипция гена tetQ является конститутивной, тогда как трансляция генов оперона tetQ-rteA-rteB усиливается при действии тетрациклина. Увеличение продукции белка обусловлено механизмом трансляционной аттенюации. Регуляторные белки RteA и RteB конъюгативных транспозонов CTnDOT формируют двухкомпонентную регуляторную систему, которая принимает участие в переносе мобилизуемых интегративных элементов с антибиотикорезистентными детерминантами, таких как NBU1, NBU2, NBU3 (NBU – nonreplicating Bacteroides unit), транспозонов Tn4399, Tn4555, Tn4551 и плазмид pIP417, pIP419, pLV22a, pBFTM10 [21]. Коперенос различных структур, как и собственный перенос, стимулируется в 1000-10000 раз тетрациклином. Способность мобилизовать другие элементы и антибиотико-стимулирующий перенос могут объяснить 80 % резистентность к тетрациклину и высокую частоту других антибиотикорезистентных генов в Bacteroides [30].
За последние два десятилетия в разных географических зонах был отмечен уровень роста резистентности к макролидным антибиотикам среди клинических изолятов стрептококков. Около 40 генов устойчивости к эритромицину (ermr) из патогенных бактерий были выделены в 21 класс [27]. У стрептококков высокий уровень резистентности к макролидам, линкозамидам и стрептограмину B (MLS фенотип бактерий) обеспечивают гены ermA и ermB, которые кодируют метилтрансферазы, модифицирующие пострансляционно 23S рРНК. Низкая резистентность бактерий (4–16 г/л) к 14- и 15-членным макролидным антибиотикам (М фенотип бактерий) обеспечивается за счет эффлюкса антибиотиков, который контролируется генами mef и mel и индуцируется невысокими концентрациями эритромицина [18]. Гены mef-класса включают несколько вариантов [20]. Ген mefA (GenBank U70055) из Streptococcus pyogenes был описан в 1996 году, а позднее был идентифицирован ген mefE (GenBank U83667) в Streptococcus pneumoniae. Менее распространенные гены mef были обнаружены в S. pneumoniae – mefI и в S. pyogenes – mefO , а также новые аллели mefB и mefG были описаны в группе B и группе G b-гемолитических стрептококков соответственно. Идентичность генов mefA и mefE составляет 90 %. Однако эти два подкласса mef генов переносятся на различных генетических элементах: mefA на дефектном неконъюгативном транспозоне Tn1207.1, mefE на элементе mega (macrolide efflux genetic assembly) [10]. Tn1207.1 (7,244 п.н.) содержит 8 orf (open reading frame – открытая рамка считывания), одна из которых кодирует сайт-специфическую рекомбиназу. mega элемент (5532 п.н.) содержит 5 orf, но не имеет районов, кодирующих транспозазу или рекомбиназу. Отмечено, что рядом с генами mef находится orf, именуемая orf5 в Tn1207.1 и mel в mega элементе, которая имеет 56 % гомологию с геном msrA из Staphylococcus aureus, кодирующая белок суперсемейства ABC транспортеров, вовлеченный в эффлюкс макролидов. В обоих мобильных элементах mel- подобные гомологи, ассоциированные с генами mefA и mefE имеют до 98 % идентичности. В S. pneumoniae mega элемент может встраиваться в различные сайты на хромосоме или Tn916- подобные генетические элементы, которые формируют новые сложные конъюгативные транспозоны, такие как Tn2009, Tn2010, Tn2017 [4]. Tn1207.1 был обнаружен в S. pneumoniae встроенным вовнутрь гена celB, а в S. pyogenes Tn1207.1 был идентифицирован как интегрированный в конъюгативный транспозон Tn1207.3 или в профаг на хромосоме. Ген mefI в S. pneumoniae переносится сложным генетическим элементом, названным 5216IQ комплексом (30505 п.н.), состоящим из двух частей. Левая часть (15316 п.н.) формируется из фрагментов известных конъюгативных транспозонов Tn5252 и Tn916 и содержит ген tetM. Правая часть комплекса 5216IQ формируется IQ элементом, который содержит гены mefI и catQ (резистентность к хлорамфениколу). Гомология гена mefI с генами mefA из Tn1207.1 и mefE из mega элемента составляет 91,4 и 93,6 % соответственно.
Молекулярный анализ антибиотикоустойчивых клинических изолятов S. pneumoniae из разных стран показал, что конъюгативные транспозоны Tn1545, Tn3872, Tn5397, Tn6002, Tn6003 играют значительную роль в распространении генов ermB и tetM. Отмечено, что в Италии и Испании в изолятах S. pneumoniae чаще встречаются Tn6002 и Tn3872, а в Японии ‒ Tn917 [6]. Конъюгативный транспозон Tn1545 почти полностью идентичен плазмиде pAM77 из S. sanguinis (98 % идентичности), кодирует гены резистентности к тетрациклину tetM, эритромицину ermB и канамицину aphA-3 [32]. По сравнению с Tn1545 у транспозона Tn917 нет генов резистентности к тетрациклину и канамицину, а его последовательность идентична неконъюгативной плазмиде с множественной резистентностью pAD2 из Enterococcus faecalis DS16 [29]. Tn917 (5614 п.н.) содержит 5 orf, две из которых кодируют 2 специфических транспозиционных гена tnpR (резолваза) и tnpA (транспозаза), а также ген ermB. Tn917 может встраиваться в orf9 транспозона Tn916, при этом образуются новые сложные транспозоны, такие как Tn3872 и Tn2008 [11]. В другой группе транспозонов в Tn1545, Tn6002 и Tn6003 ген ermB встроен в orf20 транспозона Tn916. Было выявлено, что в транспозонах Tn1545 и Tn6003 в ген ermB встроен небольшой (~4,2 т.п.н) стрептотрицин-стрептомицин-канамицин резистентный кластер (aadE–sat4–aphA-3), названный MAS (Macrolide–Aminoglycoside–Streptothricin) элементом [35]. Этот генный кластер первоначально был описан как часть структуры транспозона Tn5405 из стафилококков, а позднее обнаружен у мультирезистентной плазмиды pRE25, сообщающей резистентность к 12 различным антибиотикам [28]. При секвенировании удалось выявить только одну нуклеотидную замену A → C в гене sat4 E. coli и соответственно замену аминокислоты Glu на Gly. Кроме того, был открыт еще один элемент антибиотикоустойчивости у пневмококков, названный омега (omega) элементом [7]. В клиническом изоляте S. pneumoniae 9409 (Франция, 2002) в районе orf20 транспозона Tn916 была обнаружена встроенная последовательность, состоящая из гена aphA-3, ограниченного 2 транскрипционными омега репрессорами, и гена ermB. У стрептококков был охарактеризован новый Tn5253-подобный конъюгативный транспозон Tn1311 (GenBank FN667862), который кроме генов резистентности к эритромицину и канамицину (ermB, aphA-3) содержал ген устойчивости к хлорамфениколу cat [19].
Серьезной клинической проблемой во многих странах Европы и США является увеличение от 20 до 40 % ванкомицин-резистентных клинических изолятов энтерококков за последние годы. Гликопептидная резистентность у грамположительных кокков является гетерогенной фенотипически и генотипически [8]. Среди ванкомицин-резистентных энтерококков из французской коллекции госпитальных штаммов, отобранных с 2001 по 2008 годы, большинство (94,8 %) составляли Enterococcus faecium с генами vanA или vanB [5]. Штаммы VanA-типа показывают индуцибельную резистентность к высоким концентрациям ванкомицина и умеренно высоким концентрациям тейкопланина. VanB фенотип характеризуется широким уровнем резистентности к ванкомицину и чувствительностью к тейкопланину. Генный кластер vanA локализован на транспозоне Tn1546, который часто переносится самотрансмиссибельными плазмидами. Распространение VanB-типа резистентности обычно связывают с распространением конъюгативного транспозона Tn1549, локализованного на плазмиде или хромосоме грамположительных кокков [2]. Оперон vanB содержит гены, кодирующие дегидрогеназу, лигазу и дипептидазу, и все эти белки имеют высокую гомологию последовательностей (67-76 % идентичности) с соответствующими белками vanA оперона, а vanRBSB регуляторные гены, которые кодируют 2-компонентную систему, лишь отдаленно напоминают vanRS (34 и 24 % идентичности) [12]. Анализ вариабельности гена vanB привел к идентификации трех субтипов, названных vanB1, vanB2 и vanB3 [13, 23]. Первоначально, было показано, что генный кластер vanB1 является частью сложного транспозона (64 т.п.н.), названного Tn1547, который имеет инцерционные последовательности IS16- и IS256-подобных элементов в E. faecalis BM4281 [24]. Впоследствии, было установлено, что и в E. faecium C68 предполагаемый конъюгативный транспозон (27 т.п.н.), названный Tn5382, содержит vanB2 генный кластер. Интеграция Tn5382 в хромосому E. faecium C68 проходит в районе выше гена pbp5. В E. faecalis E93/268 и E. faecium 654, конъюгативный транспозон Tn1549 (34 т.п.н.) содержащий vanB2 генный кластер переносится конъюгативными плазмидами pIP834 и pIP835. При сравнении последовательностей Tn1549 и Tn5382 была выявлена высокая гомология [33].
Интенсивная миграция населения в мировом пространстве в сочетании с активным эволюционным процессом в бактериальных геномах микрофлоры человека создает предпосылки для возникновения новых вариантов мобильных генетических элементов с блоками генов антибиотикорезистентности и их быстрого глобального распространения. Повышение уровня антибиотикорезистентности микроорганизмов создаёт сложности для борьбы с внутрибольничными инфекциями, которые, как правило, имеют комплексный характер. В связи с этим крайне востребована разработка международных программ по надзору за использованием антибиотиков в медицине и сельском хозяйстве.
Работа выполнена при финансовой поддержке комплексной программы фундаментальных исследований УрО РАН на 2015–2017 гг., подпрограмма «Молекулярная и клеточная биология», и проекта РФФИ-Урал № 07-04-96027.
Рецензенты:Карпунина Т.И., д.б.н., профессор кафедры микробиологии и вирусологии с курсом клинической лабораторной диагностики, ГБОУ ВПО «Пермский государственный медицинский университет им. академика Е.А. Вагнера», г. Пермь;
Маслов Ю.Н., д.м.н., заведующий микробиологической лабораторией ЦНИЛ ПГМУ, профессор кафедры микробиологии и вирусологии с курсом клинической лабораторной диагностики, ГБОУ ВПО «Пермский государственный медицинский университет им. академика Е.А. Вагнера», г. Пермь.
Работа поступила в редакцию 02.03.2015.