Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,087

DEVELOPMENT OF STUDENTS CREATIVE THINKING DURING EDUCATIVE PROCESS

Suprun L.I. 1 Suprun E.G. 1
1 FGAEI HPE «Siberian Federal University» Institute of Architecture and Design
Представлен опыт работы по развитию творческого мышления студентов первого курса при проведении практических занятий по начертательной геометрии. На первый курс приходят студенты, имеющие разный уровень базовой подготовки и творческого мышления. Поэтому изначально студенческие группы неоднородны. Есть студенты сильные и слабые. Учебный процесс следует организовать так, чтобы не угас интерес к учёбе и был прогресс в развитии и тех, и других. Для закрепления теоретического материала студенты выполняют определённый набор задач, обязательный для всех. Сильным студентам дополнительно предлагаются задачи труднее с поэтапным увеличением коэффициента сложности. Сначала задачи, решаемые единственным способом и с единственным результатом. Необходимо логически выстроить цепочку рассуждений, составить план решения и выполнить построение. Затем задачи, решаемые несколькими способами. Необходимо осуществить поиски альтернативных вариантов выполнения задания с одним и тем же конечным результатом. И наконец, задачи, имеющие несколько решений. Необходимо провести исследование решения. Проработав эти этапы, студенты овладевают методикой решения самых сложных конструктивных задач, представляющих собой благодатный материал для развития творческого мышления. В статье приведены образцы таких поэтапных задач. Развитию творческого мышления способствуют и исследования по изучаемому на занятиях теоретическому материалу. В статье описан эксперимент, проведённый при изучении раздела «Перспектива».
In this article the work experience of first year students’ creative thinking development during Descriptive Geometry lessons is presented. The first year students have different level of basic training and creative thinking. That’s why there is no homogeneity in students groups. There are strong and weak students. Educative process should be organized in such a way that there will be an interest to study and the progress in development of students with different level. To consolidate the teaching material students do the sums which are obligatory for all of them. The strong students are suggested more difficult sums with phased increasing of complexity factor. At the beginning there are the sums being done uniquely and having one result. It is necessary to construct the line of reasoning, make up the plan of solution and implement the modeling. The next step is the sums which are done by several means. It is necessary to find alternative variants of solving the sums with the same final result. And at last, there are the sums with several solutions. It is necessary to research the solution. Having worked out all these stages, the students take the methodology of the most difficult constructive sums solution over. These sums are fertile material for creative thinking development. There are the models of such phased sums in the article. Theoretical material being studied during the lessons also enables the development of creative thinking. In the article there is the description of the experiment having been carried out in the unit «Perspective».
logic chains
alternative variants
constructive sums
theoretical research
1. Alimov A.T. Razvitie samostojatel’nogo i tvorcheskogo myshlenija u uchashhihsja v processe obuchenija A.T. Alimov, I.B. Savrieva Molodoj uchjonyj. 2014. рр. 468–470.
2. Bajul T.P., Stepanenkova L.T. Razvitie tvorcheskogo myshlenija studentov v processe obuchenija Pedagogicheskie nauki/5. Sovremennye metody prepodavanija: http://www.rusnauka.com/30_OINXXI_2013/Pedagogika/ 5_146957.doc.htm.
3. Inihova G.I. Razvitie tvorcheskogo myshlenija studentov v processe izuchenija discipliny «Osnovy agronomii i zootehnii» Iz opyta raboty: http://nsportal.ru./npo-spo/selskoe-i-rybnoe-khozyaistvo/library/2014/06/06/razvitie-tv.
4. Serebrennikov M.Ju., Petrikeeva I.A. Razvitie tvorcheskogo myshlenija studentov sredstvami issledovatel’skoj formy podgotovki: http://elar.usfeu.ru/bitstream/123456789/361/2/Serebrennikov.pdf.
5. Smirnov S.D. Pedagogika i psihologija vysshego obrazovanija. Ot dejatel’nosti k lichnosti. M: ACADEMA, 2001. 380 р.
6. Suprun L.I., Suprun E.G. Formirovanie nauchno-issledovatel’skih kompetencij pri obuchenii nachertatel’noj geometrii bakalavrov napravlenija «Arhitektura» Sovremennye problemy nauki i obrazovanija. 2012. no. 5; URL: http:www.science-education.ru/105-7033 (data obrashhenija: 20.09.2012).
7. Suprun L.I., Suprun E.G. Formirovanie kul’tury myshlenija bakalavrov arhitektury pri obuchenii nachertatel’noj geometrii Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanij. 2013. no. 11. рр. 92–95.
8. Hramcova E.V. Issledovanie tvorcheskogo myshlenija sovremennyh starsheklassnikov Jelektronnoe nauchnoe izdanie (jelektronnyj nauchno-pedagogicheskij zhurnal). The Emissia. Offline Letters: http:www.emissia.org/offline/2008/1270.htm.

В век бурно развивающейся науки и техники невозможно представить себе конкурентоспособного специалиста, не обладающего творческим мышлением. Можно сказать, что творческое мышление – это «двигатель» прогресса. Вот почему во все времена его воспитанию уделяли большое внимание. Актуальность этого вопроса в наше время возросла в связи с изменением структуры образования и методов обучения. Вопросами развития творческого мышления занимаются психологи и педагоги, учителя школ и учёные, а также воспитатели дошкольных учреждений. Одни дают рекомендации [2, 3, 5], другие обмениваются опытом [3, 4], третьи исследуют получаемые результаты [8]. Имеются на этот счёт публикации и у авторов статьи [6, 7]. Хотелось бы поделиться опытом организации работы по развитию творческого мышления студентов на занятиях по начертательной геометрии.

Исследования показывают, что современные старшеклассники имеют недостаточный уровень развития творческого мышления [8], да и геометрическая подготовка у них разная. Поэтому сформированные из вчерашних школьников студенческие группы неоднородны. Одни первокурсники путаются в названиях простейших геометрических тел и с трудом различают их проекции. Другие свободно владеют операциями над ними. Но в каждом из них необходимо развивать профессионально-творческое мышление. На кого ориентироваться? На слабых? Не будет развития сильных студентов и угаснет интерес к дисциплине. На сильных? Не справятся с учёбой слабые студенты. Но поскольку они приняты в вуз, то обладают каким-то потенциалом, и его надо развивать. Следовательно, учебный процесс следует организовать так, чтобы был прогресс в развитии и сильных, и слабых студентов. В рамках ограниченного времени, отведённого на изучение дисциплины, сделать это трудно, но при желании возможно. Рассмотрим, как это можно организовать при изучении начертательной геометрии.

Первым этапом любого творчества является изучение теоретического материала и приобретение навыков выстраивания логических цепочек при решении задач. По каждой теме имеется набор задач, которые решаются аналогично задачам, разобранным на занятиях, и предназначены для закрепления теории. Сильным студентам кроме этого набора рекомендуются задания повышенной сложности.

После того как рассмотрены модели точки, прямой линии, плоскости и операции с ними: параллельность, перпендикулярность, пересечение, – можно дать задание на конструирование плоской фигуры.

Задача 1. Дана прямая l общего положения и не принадлежащая ей точка В. Построить проекции квадрата ABCD, диагональ АС которого лежит на прямой l.

Задача имеет одно решение и решается единственным способом.

Студентам чётко должна быть сформулирована цель выполнения задания: закрепление теоретического материала и приобретение навыков логического мышления. Следует сразу предупредить, что задача эта для них пока сложная. Не каждый сможет с ней справиться. Но попытаться может каждый. Поскольку это первое такое задание, то одно занятие посвящается полностью консультации с разбором типовых задач, используемых при его выполнении. Сдача через две недели. Кому это сделать трудно, работу сдавать необязательно. Опыт показывает, что сильные студенты с удовольствием выполняют это задание и вовремя его сдают. На слабых студентов давить не надо. Иначе оно будет висеть над ними удручающим бременем и вызывать панический страх перед изучаемой дисциплиной. Желающие могут вернуться к его выполнению в конце семестра, когда будет изучен весь основной материал. В таком случае работа не оценивается, но будет зачтена, если студент сможет логически обосновать план решения задачи и его выполнение.

После изучения методов преобразования чертежа можно предложить задачи, решаемые несколькими способами, но дающими один и тот же результат.

Задача 2. Даны проекции отрезка АС: А1С1, А2С2 и горизонтально проецирующей плоскости S:?2. Построить проекции ромба ABCD по диагонали АС, если его диагональ ВD параллельна плоскости S, а вершина В лежит в горизонтальной плоскости проекций. Представить все возможные способы решения.

Задание усложнено тем, что помимо целей, указанных в предыдущей задаче, добавляется ещё одна: разработка альтернативных способов решения представленной задачи. В данном случае ромб может быть построен четырьмя способами.

Задача 3. Даны четыре скрещивающиеся прямые a, b, c и d. Провести прямую, параллельную d и равноудалённую от a, b, c. Показать все возможные решения.

Решение задачи на каких-то этапах может быть неоднозначным. Отсюда возникает несколько результатов. Добавляется ещё одна цель: исследование задачи на количество полученных результатов. Представленная задача имеет четыре решения. Искомая прямая линия является осью цилиндра, касающегося заданных прямых a, b, c. Таких цилиндров четыре.

Решение постепенно усложняющихся задач (с добавлением новых этапов) способствует развитию у студентов самостоятельного творческого мышления и подготавливает их к решению конструктивных задач, включающих в себя весь комплекс рассмотренных ранее приёмов. Эйнштейн в своё время говорил: «Как это чудесно, когда тебе открывается единая природа комплекса явлений, которые при непосредственном чувственном восприятии кажутся совершенно независимыми друг от друга».

Возникший интерес к решению задач повышенной сложности теперь можно поддержать и стимулом, предлагая студентам дополнительные бонусные задачи. Они должны носить конструктивный характер.

Задача 4. Даны две скрещивающиеся прямые m и n и не принадлежащая им точка А. Через точку А провести прямую, образующую угол 30° с прямой m и 45° с прямой n.

Теперь объединяются в единое все четыре поставленные ранее цели. Решение таких задач закрепляет навыки, приобретённые при выполнении предыдущих заданий: умение анализировать условие, создавать пространственные геометрические образы, составлять план, исследовать результат. Словом, всё то, без чего невозможно логическое, а следовательно, и творческое мышление.

На занятиях уделять время таким задачам нет возможности. Поэтому студентам рекомендуется дополнительная литература, а обсуждение решений проводится во внеурочное время (факультативно). Причём приглашаются не только сильные, но и все желающие студенты.

Решение бонусных задач даст возможность досрочной сдачи экзамена, либо позволит освободить на экзамене от части задач. Проверить свой потенциал студенты смогут участием в вузовской, а затем и региональной олимпиаде по начертательной геометрии.

Таким образом, к концу первого семестра сильные студенты повышают свой уровень благодаря решению дополнительных, вызывающих у них интерес задач. Слабые студенты развиваются благодаря решению типовых задач по изучаемым темам.

Во втором семестре статус сильного и слабого студента может уже поменяться. Это зависит от того, с каким рвением и желанием они включились в учёбу. Сильный студент может перейти в разряд слабых и наоборот. Поэтому во втором семестре речь идёт просто о студентах, желающих повысить свой творческий потенциал. Предложить им можно участие в доступной для них исследовательской работе в рамках учебного процесса.

Расскажем об эксперименте, проведённом в 2014 году на кафедре «Геометрическое моделирование и компьютерная графика» института архитектуры и дизайна СФУ. Во втором семестре студенты-архитекторы изучают только две темы: перспектива и тени, аксонометрия и тени. Всего 36 часов аудиторных занятий и ни одного часа на самостоятельную работу. Поэтому всё даётся по минимуму, и основная работа должна быть в аудитории. На занятии построение перспективы выполняли по схеме Гаука. Желающим было предложено ознакомиться самостоятельно ещё с двумя способами: методом архитектора и радиальным методом – и дать их сравнительную оценку. В эксперименте пожелали участвовать 20 студентов.

Перед студентами были поставлены задачи: выяснить, чем существенно различаются эти методы, что у них общего. Определить трудоёмкость построения перспективы каждым методом.

Сначала студенты ознакомились и описали принцип построения перспективы точки каждым из указанных выше способов. Обсуждение результатов вылилось в следующую их характеристику.

Сравнительный анализ методов

В схеме Гаука перспектива строится без основания картины. В методе архитектора и радиальном методе при построении перспективы используется основание картины.

В схеме Гаука и методе архитектора используются точки схода. В радиальном методе – нет.

Однако несложно заметить, что во всех трех случаях перспектива точки получается при пересечении лучей двух пучков. Следовательно, по сути это не разные методы. Везде «работает» схема Гаука. Внешнее различие – это просто разные приемы построения соответственных лучей. Так, для переноса высоты любого количества вершин в схеме Гаука используется одна общая связующая линия. В методе архитектора их несколько, а в радиальном методе для каждой точки отдельная линия.

Таким образом, радиальный метод и метод архитектора можно считать частными вариантами схемы Гаука.

При построении перспективы точки в схеме Гаука и методе архитектора необходимо выполнить по 14 операций и провести соответственно 6 и 7 линий. В радиальном методе – 11 операций и 5 линий. На первый взгляд может показаться, что радиальный метод проще. Но это обманчивая простота, так как в схеме Гаука и методе архитектора для построения последующих точек используются точки схода, что значительно сокращает количество операций. В радиальном методе для каждой точки все операции полностью повторяются.

Затем каждому студенту было предложено построить перспективу одного и того же объекта тремя способами: радиальным, методом архитектора и по схеме Гаука. В целях экономии времени объект был выбран несложный. Необходимо было провести хронометраж времени построения перспективы и дать оценку трудоёмкости каждого метода.

По результатам эксперимента 65 % участников отдали предпочтение схеме Гаука, 15 % поставили на первое место метод архитектора, 15 % отметили равнозначность методов Гаука и архитектора и 5 % высказались за радиальный метод.

После обсуждения полученных результатов определили среднюю трудоёмкость построения перспективы разными способами и дали оценку трёх выделенных позиций по пятибалльной шкале. Результаты приведены в таблице. Под лёгкостью чертежа здесь понимается загруженность его линиями построения. Чем больше линий, тем меньше балл. Причём позиции и их оценку студенты предложили сами. Изначально перед ними такая задача не ставилась.

Результаты сравнительного анализа способов построения перспективы

Метод

Время

Понимание

Точность

Лёгкость чертежа

Схема Гаука

39 мин

5

5

5

Архитектора

42 мин

4

5

5–

Радиальный

52 мин

4

3

3

Студенты работали увлечённо. Во внеурочное время приносили и показывали результаты, консультировались, выясняли, почему не получилось. Каждый сдал свои работы вместе с отзывом о методах построения перспективы и участия в эксперименте. Выдержки из них приведены ниже.

Схема Гаука. Самый лёгкий, удобный, быстрый и понятный метод. На фасаде мы чётко видим и отмечаем высоту объектов, а на плане – их ширину, что упрощает построение перспективы.

Метод архитектора. Показался простым и понятным. Работаем только с планом. Не надо «бегать глазами» с одного вида к другому, но обилие линий может усложнить построение. К тому же выносимые линии могут оказаться за пределами чертежа. Тогда придётся комбинировать построение с другим методом.

Радиальный метод. Самый кропотливый. Проигрывает другим методам по всем показателям. Главный вид «утопает» в многочисленных линиях и точках. Из-за отсутствия точек схода возникает большая погрешность. Требует большой точности в измерениях. Однако удобно использовать при построении перспективы сложных криволинейных поверхностей или объектов с многочисленными направлениями прямолинейных контуров. Применяла его на архитектурном проектировании.

Мне понравилось участвовать в эксперименте. Я нашла в этом много интересного и полезного для саморазвития.

Вот какой вывод в заключение сделали студенты.

В результате проведённой научно-исследовательской работы, которая включала в себя как теоретическую, так и практическую часть, было установлено, что наиболее удобным и универсальным методом построения перспективы является схема Гаука. Результатом данной работы также стало освоение студентами первого курса различных методов построения перспективы, что безусловно, является немаловажным как в контексте дальнейшего обучения, так и в контексте непосредственного ведения профессиональной деятельности.

От себя хочется добавить, что студенты сделали первые шаги по пути формирования творческого мышления, без которого невозможна их профессиональная деятельность. О полученных результатах они доложили на студенческой конференции.

Вывод

Развитие творческого мышления студентов при проведении практических занятий возможно. Правда это ложится дополнительным бременем на педагога. Но что поделаешь. На то мы и педагоги, а не урокодатели. Достичь положительного результата можно лишь в том случае, когда у студента есть желание учиться, а у педагога – желание учить.

Рецензенты:

Волков В.Я., д.т.н., профессор, зав. кафедрой НГИиКГ, ФГОУ ВПО «СибАДИ», г. Красноярск;

Царёв В.И., доктор архитектуры, профессор кафедры «Градостроительство», ФГАОУ ВПО СФУ, г. Красноярск.

Работа поступила в редакцию 23.09.2014.