Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

MORPHOTYPE FORMING IN HYBRID PROGENIES OF 6X-TRITICALE AND EMMER WHEAT

Mekhtieva S.P. 1 Aminov N.K. 1
1 Genetic Resources Institute of ANAS
This paper is presenting the results of generating the hybrid populations of wheat-rye amphiploid ABDR to tetraploid wheats T. dicoccum var. rufum and T. paleocolchicum Men. A study was made of the morphotype forming using the characters of the spike and the inheritance of some agronomically quantitative traits in the hybrid generations (F1-F5) of 6x-triticale ABDR×T. dicoccum var. rufum. The percentage of the hybrid plants from the phenotypic groups with durum like plants and the plants like interspecies hybrids of tetraploid wheats were increasing, but the intermediate and triticale-like plants were very slight over F1-F5 generations. Among the plants of late generations the short stemmed (41–70 сm) and long-stemmed (95–103 сm) transgressive morphotypes with the desirable traits and also plants with intermediate and triticale-like types for further research works were selected.
hexaploid triticale
tetraploid wheat
emmer wheat
hybrid population
morphotype forming
quantitative traits
1. Aminov N.Kh., Mamedov А.R. Nekotoriye osobennosti tryoxrodovikh qibridov (Triticum x Aegilops) x Secale. Materiali VI syezda qenetikov i selektsionerov Azerbaydjana. Baku, «Elm», 1991, рp. 26.
2. Voskresenskaya G.S., Shpot V.I. Transgressiya priznakov u qibridov Brassica I metodika kolichestvennoqo ucheta etoqo yavleniya.// Selektsiya i Semenovodstvo. 1967, no. 6, pp. 18–20.
3. Lakin G.F. Biometriya: uchebnoye posobiye dlya biologicheskikh spetsionalnostey vuzov. Moskva, 1990. рp. 352.
4. Litvinenko N.A. Maksimov N.G. Geneticheskiye i selektsionniye aspekti ispolzovaniya ozimikh geksaploidnikh tritikale. Selektsiya i nasinnitstvo. 2008. Vipusk 96. pp. 15–33.
5. Sulima Y.G., Sechnyak L.K. Tritikale. M.: Kolos, 1984. рp. 317.
6. Shishlova N.P., Shishlova A.M. Biometricheskaya i fiziko-chimicheskaya xarakteristika mejrodovikh retsiproknikh gibridov mejdu (Triticosecale Wittmack) i pshenitsey (Triticum spelta i Triticum turgidum). Izvestiya Natsionalnoy Akademii Nauk Belorussii, no. 14, Minsk, 2012. pp. 28–33.
7. Beil G.M. Inheritance of quantitative characters in grain sorghum / G.M. Beil, R.E. Atkins //Jowa J Sci. – 1965. Vol. 39, no. 3. pp. 345–348.
8. Jouve, N. et al. Hybrids 6x-triticale × Triticum turgidum L. and the obtention of its F2 and BC1 progenies. Cereal Res. Comm. 1984. no. 12, pp. 223–228.
9. Morrison E., Sears E. Wheat and wheat improvement, 1967, pp. 19-97. (Sokr. rus. perevod: selsk. khoz-vo za рубежом, 1968, no. 12, 1969, no.1).
10. Sadanaga, K. Cytological studies of hybrids involving Triticum durum and Secale cereale. 1. Alien addition races in tetraploid wheat. Cytologia, Tokyo, 1957, no. 22. pp. 312–21.

Отдаленная гибридизация между родами тритикале и пшеницы дает перспективный материал как для селекции, так и для изучения процессов, которые происходят при формообразовании [4]. При таких скрещиваниях происходят рекомбинации как между геномами пшеницы и ржи, так и между геномами пшениц, принадлежащих разным видам рода Triticum. Самым перспективным и широко используемым типом таких скрещиваний являются скрещивания гексаплоидных тритикале с мягкой пшеницей. Но для изучения процессов формообразования интересны также гибриды гексаплоидных тритикале с тетраплоидной пшеницей, родительские виды которых различаются как по геномному составу пшеничного компонента, так и отсутствием буферной роли D-генома [10, 9]. Работ, посвященных этому типу скрещиваний, относительно немного и в них использованы тетраплоидные пшеницы T. durum и T. turgidum [6, 8, 10].

Целью нашей работы явилось создание исходного материала и изучение формообразовательных процессов в гибридных популяциях, полученных при скрещивании пшенично-ржаного амфиплоида ABDR с тетраплоидными пшеницами T. dicoccum и T. paleocolchicum.

Материалы и методы исследования

Объектом исследования являлись тритикально-шеничные гибриды F1-F5, которые изучали с 2009 по 2013 год. В гибридизации был использован пшенично-ржаной амфиплоид ABDR (2n = 6х = 42, геном AАBВD/R), выделенный из гибридной популяции синтетической пшеницы ABD (T. durum×Ae. squarrosa) c сорно полевой рожью Secale cereale ssp. segetale (2n = 2х = 14, геном RR) [1]. Пшеница была представлена двумя видами: T. dicoccum var. rufum (2n = 4х = 28, геном AABB) и T. paleocolchicum Men. (2n = 4х = 28, геном AABB). Гибридизация ABDR с тетраплоидными пшеницами была проведена по схеме реципрокного скрещивания: тритикале/пшеница (прямые) и пшеница/тритикале (обратные).

Кастрацию колосьев проводили по общепринятой методике. Определяли завязываемость и жизнеспособность гибридных зёрен, и генетическую совместимость ABDR и тетраплоидных пшениц

(Eqn33.wmf).

Посев образцов и их гибридов проводили вручную, растения убирали с корнями. Растения гибридных популяций F1-F5 анализировали по морфологическим признакам и элементам продуктивности в сравнении с исходными родительскими формами. Показатель степени фенотипического доминирования признаков растений в первом поколении гибридов определяли по формуле G.M. Beil и R.E. Atkins (1965) [7]. Начиная с третьего поколения, у гибридных растений по отношению к пшеничному родителю определяли степень и частоту положительных и отрицательных трансгрессий изучаемых признаков по методике Воскресенской‒Шпота (1967) [2].

Статистическую обработку данных проводили в соответствии со стандартными методиками [3], с использованием компьютерных программных обеспечений Microsoft Excel 2010 и IBM SPSS Statistics (Version 20).

Результаты исследования и их обсуждение

Результаты скрещивания пшенично-ржаного амфиплоида ABDR с тетраплоидными пшеницами по 2 комбинациям приведены в табл. 1. Как видно из таблицы, комбинационная совместимость амфиплоида ABDR с тетраплоидной пшеницей различалась незначительно. Большая совместимость была в комбинации ABDR×T. dicoccum var. rufum (17,32 %), несколько меньше в комбинации ABDR×T. paleocolchicum Men. (14,14 %). Исходя из литературных данных [5], успех гибридизации в скрещиваниях тритикале с тетраплоидной пшеницей зависит как от климатических условий, так и от направления скрещивания, приводящих к достоверным различиям в образовании и жизнеспособности гибридных зерновок при прямых и обратных скрещиваниях. В отличие от результатов венгерского ученного Киша [5], в климатических условиях Апшеронской опытной станции, где проводились наши опыты, гибридные семена завязывались лучше при скрещивании ABDR с гексаплоидной пшеницей, чем с твёрдой, однако всхожесть в случае с последними была также ниже. Так, в нашем материале в среднем завязываемость семян в комбинации ABDR×4х пшеница составила 9,98 %, а в обратных скрещиваниях в два раза больше, чем в прямых, и составила в среднем 20,13 %. Эти показатели почти в два раза меньше показателей завязываемости семян при скрещивании ABDR с гексаплоидной пшеницей, где в среднем при прямых скрещиваниях она составила 16,69 %, а при обратных – 36,39 % соответственно.

Таблица 1

Скрещиваемость пшенично-ржаного амфиплоида ABDR с тетраплоидной пшеницей

№ п/п

Комбинация скрещивания

Опылено цветков

Завязалось гибридных зерен

Всхожесть, %

Полевая выживаемость, %

Совместимость, %

число

%

1.

ABDR×T. dicoccum

102

12

11,76

25

33,33

17,32

2.

T. dicoccum×ABDR

164

36

21,95

0

0

3.

ABDR×T. paleocolchicum

122

13

10,66

20

33,33

14,14

4.

T. paleocolchicum×ABDR

153

28

18,30

0

0

При этом жизнеспособность зерновок проявляет такую же закономерность, как и при скрещиваниях ABDR с гексаплоидными пшеницами, а именно в нашем материале в комбинациях 4х пшеница×ABDR не получено гибридных растений, а в комбинациях ABDR×4х пшеница она составила в среднем 22.5 %. Таким образом, имелись резкие реципрокные различия при скрещивании ABDR с тетраплоидной пшеницей. Это согласуется с литературными данными о том, что если при гибридизации с мягкой пшеницей в обратной комбинации все же образуются немногие жизнеспособные семена, то при участии твердой пшеницы отмечается полная постгамная несовместимость. Гибридные зерновки обратной комбинации не всходили даже при проращивании на питательной агаровой среде [5].

Гибриды F1 в обоих комбинациях морфологически были промежуточными, с тонкими прочными стебляим и узкими листьями, имели низкую кустистость. Колосья были неопушенные, с черными остьями и со слабым опушением под колосом. В комбинации ABDR×T. dicoccum (рис. 1) колосья имели тенденцию к ветвистости, что отмечалось и другими ученными в комбинациях скрещивания гексаплоидного тритикале с T. durum и T. turgidum [10, 6]. Характеристика наследования количественных признаков у гибридов ABDR с тетраплоидными пшеницами в ряду поколений дана в таблице 2. Отмечено, что по высоте растений (ВР) у гибридов F1 наблюдалось неполное доминирование высокорослости (0,54 ≤ hp ≤ 0,69). По признаку «длина колоса» (ДК) гибриды F1 превосходили пшеничных родителей, наблюдалось частичное доминирование (–0,33 ≥ hp ≥ –0,41) малой длины колоса. По числу колосков в колосе у гибридов F1 в комбинации ABDR×T. dicoccum наблюдалось частичное доминирование (0 > hp ≥ –0,22), а в комбинации ABDR×T. paleocolchicum сверхдоминирование (hp = –8) малого числа колосков в колосе. По фертильности колоса (ФК) гибриды F1 уступали исходным формам, в среднем по комбинациям она равнялась 3,3 и 4,3 %. При этом всхожесть семян, полученных от растений F1, в обеих комбинациях была очень низкой. Так, для комбинации ABDR×T. paleocolchicum она составила 15.38 %, а для комбинации ABDR×T. dicoccum –12 %. При этом полевая выживаемость гибридов F2 от скрещивания ABDR с тетраплоидными пшеницами оказалась также низкой. В полевых условиях выжило только одно растение из комбинации ABDR×T. dicoccum, остальные растения из этой комбинации погибли в фазе трёх листьев. Два гибридных растения F2 из комбинации ABDR×T. paleocolchicum достигли конца вегетации, но оказались полностью стерильными. Выжившее растение F2 в комбинации ABDR×T. dicoccum характеризовалась высокой продуктивной кустистостью (21 стеблей, из которых 19 имели более или менее озерненные колосья) и недетерминированным летним кущением, которое продолжалось вплоть до уборки. Колосья этого растения были пшеничного типа, менее ломкие по сравнению с пшеничным родителем, красного цвета, неопушенные, с черными остьями, без опушения под колосом. Высота этого растения, как и стерильных растений из комбинации ABDR×T. paleocolchicum, оказалось ниже этого показателя у родительских растений, как исходных, так и растений F1, т.е. наблюдалась тенденция к низкорослости. Колосья стерильных растений комбинации ABDR×T. paleocolchicum были тритикального типа, неопушенные, остистые, с опушением под колосом. Как видно из табл. 2, ФК гибридного растения F2 из комбинации ABDR x T. dicoccum оказалось достаточно высокой, было получено 284 зерна, из которых проросли 218 (в лаборатории). Полевая выживаемость этих растений оказалась низкой и составила 55 %, отчасти из-за неблагоприятных погодных условий, сложившихся как в первой половине вегетации (несвойственная высокая температура для осенних месяцев 2010 г. и для первых месяцев зимы 2011 г.), так и во второй половине развития растений (высокий естественный инфекционный фон жёлтой ржавчины и мучнистой росы). Все гибридные растения третьего поколения фенотипически были подразделены на растения пшеничного, тритикального и промежуточного типа, которые составили соответственно 73, 23 и 4 % от общего числа популяции. Начиная с F3 в незначительном количестве отмечены формы, сходные с другими видами пшениц: T. polonicum и T. turgidum (рис. 2). Высота гибридных растений F3 в среднем для всей популяции составила 83 см, для фенотипической группы пшеничного типа 86 см, а для тритикального и промежуточного типа – 72 и 71 см соответственно. При этом самые высокорослые растения (более 123 см) вошли только в фенотипическую группу пшеничного типа, а низкорослые – до 123 и 84 см ‒ в группу промежуточного и тритикального типа. Степень трансгрессии по ВР у гибридов F3 колебалась от –56 до 46 %, а частота трансгрессии составила 80 %. Длина колоса у всех перечисленных фенотипических групп в среднем была равна 12 см, но количество колосков у тритикального и промежуточного типа оказалось больше на 2–3 шт. по сравнению с пшеничным морфотипом. Положительной трансгрессии по признаку «длина колоса» не наблюдалось, отрицательная трансгрессия колебалась от –10 до 49 %, а частота трансгрессии составила 50 %. Продуктивность растений по фенотипическим группам у гибридов F3 оказалось различной: от 0 до 99 % для пшеничной группы, от 0 до 48 % для тритикальной и от 0 до 12 % ‒ для промежуточной группы. Выявлена положительная корреляционная связь между ВР и ФК (r = 0,399, P < 0,01), а также между ДК и ЧК (r = 0,415, P < 0,01). Фенотипическое разделение оказалось следующим: 92 % для пшеничного типа, 2 % ‒ для тритикального и 4 % ‒ для промежуточного типа. Высота гибридных растений F4 в среднем для всей популяции по сравнению с F3 возросла на 20 см и составила 102 см, а для фенотипических групп – 103 см для пшеничного типа, 87 см ‒ для тритикального и 98 см ‒ для промежуточного типа. Степень трансгрессии по ВР у гибридов F4 колебалась от –65 до 13 %, а частота трансгрессии составила 40 %. Длина колоса в среднем для всей популяции F4, как и для F3, составила около 12 см, с самым широким варьированием у растений пшеничного морфотипа – от 4,5 до 23,5 см. В отличие от гибридов F3 в F4 наблюдалась положительная трансгрессия от 5до 12 % по признаку «длина колоса» с частотой трансгрессии 1 %. Положительной трансгресии по ЧК не наблюдалось. Продуктивность растений по фенотипическим группам у гибридов F4 оказалась различной: от 1 до 100 % ‒ для пшеничной группы, от 15 до 57 % ‒ для тритикальной и от 3 до 97 % для промежуточной группы. Выявлена положительная корреляционная связь между ВР и ФК (r = 0,114, P < 0,05), между ВР и ДК (r = 0,159, P < 0,01), а также между ДК и ЧК (r = 0,131, P < 0,01), а отрицательная корреляционная связь между ДК и ФК (r = –0,105, P < 0,05). Фенотипическое подразделение на группы растений F5 оказалось следующим: 97 % ‒ для пшеничного типа, 1 % ‒ для тритикального и 2 % для промежуточного типа. Высота гибридных растений F5 в среднем для всей популяции по сравнению с F4 возросла на 10 см и составила 112 см, а для фенотипических групп – 115 см для пшеничного типа, 68 см ‒ для тритикального и 105 см ‒ для промежуточного типа. Степень трансгрессии и частота трансгрессии по ВР у гибридов F5 оказалась примерно такой же, как у F4, что свидетельствует об относительной стабилизации популяции. Длина колоса в среднем для всей популяции F5 составила 13 см, с самым широким варьированием у растений пшеничного морфотипа – от 4 до 30 см. Наблюдалась положительная трансгрессия от 2,4 до 40 % по признаку «длина колоса» с частотой трансгрессии 8 %. Но положительной трансгресии по ЧК в F5, как и F4, не наблюдалось. Продуктивность растений по фенотипическим группам у гибридов F5 оказалась различной: от 4 до 100 % (в среднем 61 %) для пшеничной группы, от 20 до 63 % (в среднем 38 %) ‒ для тритикальной и от 4 до 100 % ‒ для промежуточной группы. Выявлена положительная корреляционная связь между ВР и ФК (r = 0,328, P < 0,01), между ДК и ЧК (r = 0,273, P < 0,01), а также между ВР и ЧК (r = 0,135, P < 0,05).

pic_55.tif

Рис. 1. Гибриды F1 комбинации ABDR×T. dicoccum

Из гибридов F4-F5 выделен ряд трансгрессивных низкорослых (41–70 см) и высокорослых (95–103 см) форм твёрдой пшеницы, отличающихся хорошо озернённым колосом и выполненным зерном. Следует отметить, что по сравнению с поздними поколениями комбинаций ABDR×6х пшеница, в поздних комбинациях ABDR×T. dicoccum промежуточная и тритикальная фенотипические группы были малочисленными. Из последних фенотипических групп по некоторым биологическим свойствам отобраны 4 низкорослые (55–86 см) формы для дальнейшего изучения.

Таким образом, было установлено, что при скрещивании ABDR с тетраплоидной пшеницей имелись резкие реципрокные различия. Гибриды F1 были низкорослы и длинноколосы по сравнению с пшеничным родителем. В последующих генерациях в результате расщепления по морфологическим признакам и биологическим свойствам появляются трансгрессивные низкорослые и высокорослые формы твёрдой пшеницы и тритикале. Также выявлено, что формообразовательный процесс у гибридов амфиплоида ABDR с тетраплоидной пшеницей во многих поколениях протекает с увеличением доли растений пшеничного типа из-за быстрой элиминации ржаных хромосом, в результате чего большая часть растений гибридной популяции представляет собой сложную мозаику межвидовых гибридов пшеницы.

Таблица 2

Сравнительная характеристика наследования количественных признаков в ряду поколений (F1-F5) у гибридов ABDR с тетраплоидной пшеницей

Поколение/Родители

Гибридные омбинации/Родительские формы

ВР, см

Eqn34.wmf

ДК, см

Eqn34.wmf

ЧК, шт.

Eqn34.wmf

ПК,

Eqn34.wmf

ФК, %

Eqn34.wmf

P

ABDR

100

21

41

1,90

93

T. dicoccum var. rufum

139

11,8

23

1,86

100

T. paleocolchicum Men.

132

11

40

3,55

100

F1

ABDR×T. dicoccum

130

14,5

30

2

3,3

ABDR×T. paleocolchicum

127

15,0

33

2,13

4,3

F2

ABDR×T. dicoccum

112

13,4

26

1,86

76,8

ABDR×T. paleocolchicum

67

10

24

2,3

0

F3

ABDR×T. dicoccum

82,49 ± 2,25

(44–173)*

11,68 ± 0,29

(6–19)

22,08 ± 0,39

(13–32)

1,96 ± 0,05

(1,19–3,43)

10,41 ± 2,18

(0-99)

F4

ABDR×T. dicoccum

101,9 ± 1,13

(35–173)

11,53 ± 0,17

(4–23,50)

21,56 ± 0,16

(9–32)

2,02 ± 0,03

(0,89–4,26)

53,71 ± 1,47 (1–100)

F5

ABDR×T. dicoccum

112,08 ± 1,99 (35–173)

13,23 ± 0,33

(3,80–30)

25,83 ± 0,24

(15–38)

2,17 ± 0,05

(0,83–4,80)

58,46 ± 1,78

(3,70–100)

Примечание. *В скобках – границы варьирования.

pic_56.tif pic_57.tif pic_58.tif pic_59.tif

Рис. 2. Гибридные формы в F4 и F5, сходные с другими видами пшениц: T. polonicum и T. turgidum

Рецензенты:

Шыхлински Г.М., д.б.н., старший научный сотрудник, заведующий отделом охраны растений, Институт генетических ресурсов НАНА, г. Баку;

Алиев Р.Т., д.б.н., профессор, заведующий отделом физиологии растений, Институт генетических ресурсов НАНА, г. Баку.

Работа поступила в редакцию 25.12.2013.