Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

IMMUNOPHENOTYPE FEATURES OF DENDRITIC CELLS AND T-LYMPHOCYTES IN PATIENTS WITH PULMONARY TUBERCULOSIS

Haitova Z.K. 1 Urazova O.I. 1 Hasanova R.R. 1 Yesimova I.E. 1 Novitsky V.V. 1 Voronkova O.V. 1
1 Siberian state medical university Tomsk
In this paper we show that, on dendritic cells (DC) and T-lymphocytes in patients with pulmonary tuberculosis are scarce surface molecules involved in the formation of the immunological synapse, it is resulting in an impaired intercellular interactions and the immune response. The immunophenotype of DC and T-lymphocytes was investigated. It has been shown that the expression of co-stimulatory molecules (CD80, CD86) on the surface of DC in patients with pulmonary tuberculosis was reduced as compared to healthy donors. There isn’t difference of expression of HLA molecules on the surface of DC in patients with pulmonary tuberculosis and a group of healthy donors. The number of T-lymphocytes bearing molecule CD3, CD28 was decreased in patients with pulmonary tuberculosis, percentage of CD3+ CD28+ cells containing intracellular IL-2 was also decreased in patient with pulmonary tuberculosis, compared with that in the control group. Thus, in pulmonary tuberculosis is a molecules deficit on surface of DC and T cells, involved in the formation of the immunological synapse, which results can be a violation of intercellular interactions, implement inductive phase of the immune response and, as a result, lack of IL-2-synthetic function of the T- cells. Apparently, these disorders are associated with long-term persistence of mycobacterium antigen in the body of patients and the immediate negative impact of M.tuberculosis on immune competent cells.
dendritic cells
T-cells
an immunological synapse
costimulation molecules
tuberculosis
1. Ivashkin V.T. Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2008, no. 4, pp. 4–13.
2. Novitsky V.V., Voronkova O.V., Urazova O.I. Patologicheskaya fiziologiya i eksperimental’naya terapiya, 2008, no. 1, pp. 15–18.
3. Novitsky V. V., Urazova O. I. Uspehi fiziologicheskih nauk, 2004, no. 1, pp. 43–52.
4. Urazova O.I., Novitsky V.V., Churina E.G. Byulleten’ sibirskoi mediciny, 2010, no. 3, pp. 42–50.
5. Urazova O.I., Novitsky V.V., Voronkova O.V. Vestnik Ural’skoi medicinskoi akademicheskoi nauki, 2010, no. 4, pp. 104–107.
6. Yesimova I.E., Urazova O.I., Novitsky V.V., Byulleten’ sibirskoi mediciny, 2012, no. 3, pp.79–86.
7. Haitova Z.K., Khasanova R.R., Voronkova O.V., Russian journal of immunology, 2012, no. 2, pp. 119–123.
8. Haitov R.M., Pashenkov M.V., Pinegin B.V., Immunologiya, 2009, no. 1, pp. 66-74.
9. Hasanova R.R., Voronkova O.V., Urazova O.I. Tuberkulez i bolezni legkih, no. 3, pp. 31–35.
10. Sepiashvili R.I., Balmasov I.P. Molekulyarnaya medicina, 2008, no. 1, pp. 14–22.
11. Churina E.G., Novitsky V.V., Urazova O.I. Byulleten’ sibirskoi mediciny, 2011, no. 4, pp. 183–186.
12. Tukhvatullin A.I., Logunov D., Sherbinin D.N. etc. Biochemistry, 2010, no. 9, pp. 1224–1243.
13. Urazova O.I. Byulleten’ sibirskoi mediciny, 2010, no. 5, pp. 5–13.
14. Homchenko Dzh.A. Biologicheskie membrany, 2010, no. 4, pp. 307–313.
15. Mycobacterium tuberculosis Induces Differential Cytokine Production from Dendritic Cells and Macrophages with Divergent Effects on Naive T Cell Polarization / S.P. Hickman, J. Chan, P. Salgame // Journal of Immunology. – 2002. – Vol. 168. – P. 4636–4642. 
16. Liu K., Origin and development of dendritic cells / K. Liu, M.C. Nussenzweig // Immunol. Rev. – 2010. – Vol. 234, № 1. – P. 45–54.

Как известно, иммунный ответ - это многоуровневый и многокомпонентный процесс, протекающий с вовлечением большого числа иммунокомпетентных клеток (антигенпрезентирующих, регуляторных, эффекторных), взаимодействующих между собой посредством поверхностных молекул и секретируемых цитокинов. Клеточная кооперация является необходимым условием для формирования иммунного ответа против инфекционных патогенов, в частности Mycobacterium tuberculosis (МВТ). Ключевым моментом в запуске иммунного ответа против МВТ, определяющим дальнейшее течение и исход патологического процесса, является представление антигена Т-лимфоцитам антигенпрезентирующими клетками (APC) [11, 6]. Взаимодействие APC и Т-лимфоцитов происходит в структурированной зоне контакта между клетками с формированием иммунологического синапса, представляющего собой комплекс молекул адгезии, костимуляции и антигенного представления, обеспечивающего осуществление той или иной формы иммунологического распознавания и связанной с ним сигнализации [9]. В роли APC могут выступать макрофаги и дендритные клетки (DC). Уникальность DC опосредуется наличием многочисленных и разнообразных поверхностных структур, которые вовлекаются в процесс праймирования лимфоцитов и межклеточной кооперации [13]. Зрелые DC индуцируют Т-лимфоциты, при этом, чем выше степень зрелости DC и плотность экспрессируемых молекул для кооперации, тем прочнее и длительнее контакт между клетками. В последующем активированный Т-лимфоцит отделяется от DC и для выполнения своих эффекторных функций мигрирует в ткани [4].

Из литературных источников известно, что противоинфекционный иммунный ответ начинается с распознавания инфекционного патогена DC с помощью паттерн-распознающих рецепторов (PRR), взаимодействующих с патоген-ассоциированными паттернами [7, 15]. Помимо PRR (к которым относятся, в частности, Толл-подобные рецепторы - TLR) DC экспрессируют молекулы главного комплекса гистосовместимости (МНС или HLA), костимуляторные молекулы семейства В7 (CD80/CD86), синтезируют цитокины (IL-12, IL-18, IL-27 и др.). Данные молекулы необходимы для активации Т-лимфоцитов и запуска иммунного ответа [16].

Формирование иммунологического синапса необходимо для передачи двух основных сигналов, первый из которых несет информацию об антигене (производится за счет распознавания TCR-рецептором Т-лимфоцита комплекса антигена с молекулами главного комплекса гистосовместимости (в случае туберкулезной инфекции - МНС класса II)). При контакте CD3/TCR с комплексом «пептид-МНС» больше порогового времени наивная Т-клетка (Th0) активируется и претерпевает клональную пролиферацию и дифференцировку в эффекторные Т-клетки (Th1) или Т-клетки памяти. Данный процесс сопровождается качественным изменением набора поверхностных адгезивных молекул, которые направляют уже эффекторные Т-клетки из лимфоидных органов в места локализации патогена (барьерные ткани и очаги воспаления) [1].

Второй немаловажный активационный сигнал осуществляется за счет взаимодействия костимуляторных молекул В7 (CD80, CD86) на поверхности APC с молекулой CD28, конституционно представленной на поверхности всех покоящихся CD4+ и CD8+ Т-клеток. Биологический смысл взаимодействия В7 и CD28, по мнению исследователей, заключается в «подтверждении» сигнала активации, полученного Т-клеточным рецептором, и защите от аутоагрессии лимфоцитарными клонами, не прошедшими отрицательную селекцию в тимусе, поскольку сам факт распознавания антигена не является единственным условием запуска дифференцировки наивных Т-клеток. Считается, что именно через данное взаимодействие обеспечиваются, в первую очередь, усиление и продление сроков продукции IL-2, а также (в меньшей степени) секреция интерферона (IFN) γ Т-лимфоцитами [1, 5, 12].

Показано, что длительная персистенция микобактериального антигена приводит к дисфункции как со стороны APC, так и со стороны Т-лимфоцитов [2, 14]. В свою очередь, знание молекулярной природы нарушений взаимодействия основных клеток иммунной системы необходимо для более полного и глубокого понимания патогенеза туберкулезной инфекции, на котором базируются современные подходы к лечению иммунозависимых заболеваний, к которым относится, в частности, туберкулез легких.

Целью настоящей работы явилось исследование у больных туберкулезом легких иммунофенотипа DC и Т-лимфоцитов, а именно оценка экспрессии на клетках молекул, участвующих в образовании иммунологического синапса, и (по результатам определения внутриклеточного IL-2 - IL-2 + клеток) IL-2-синтетической активности Т-лимфоцитов крови.

Материал и методы исследования

В исследовании DC получали путем трансформации in vitro из моноцитов периферической крови. Мононуклеарные клетки выделяли из гепаринизированной венозной крови путем центрифугирования в градиенте плотности фиколл-верографина; фракции моноцитов и лимфоцитов разделяли путем центрифугирования в двойном градиенте плотности перколла. Изолированные моноциты отмывали средой RPMI-1640 и вносили в плоскодонные 24-луночные планшеты в количестве 1∙106 клеток в 1 мл. Культивирование осуществляли в полной питательной среде, содержащей 10 %-ю эмбриональную телячью сыворотку, 50 мкг/мл пенициллина-стрептомицина, 0,29 мкг/мл L-глутамина с добавлением цитокинов (IL-4 и гранулоцитарно-макрофагального колониестимулирующего фактора роста (GM-CSF)) («Sigma», США), при 37 °С в СО2-инкубаторе в течение 7 дней. Замена полной питательной среды производилась на 3-и и 5-е сутки. Дополнительно на 5-е сутки клетки стимулировали липополисахаридом («Sigma», USA). Исследование DC проводили с помощью микроскопа фирмы Carl Zeiss (Германия).

Культивирование лимфоцитов, выделенных на двойном градиенте плотности фиколл-урографина (1,077 и 1,083 г/см3), осуществляли в полной питательной среде с поэтапным добавлением в культуру клеток моноклональных антител к CD3- и CD28-молекулам («R&D Systems», США) и блокатора внутриклеточного транспорта монензина («Sigma», США). Образцы инкубировали в СО2-инкубаторе при температуре 37 °С. Общее время инкубации составило 12 ч. Процедуру окрашивания поверхностных молекул (CD3, CD28) и внутриклеточного аналита (IL-2) осуществляли согласно протоколам фирмы производителя («R&D Systems», США).

Иммунофенотипирование трансформированных зрелых DC и лимфоцитов крови проводили методом проточной цитометрии на проточном цитофлуориметре FACSCalibur (Becton Dickinson, США) с использованием моноклональных антител, меченных флуресцентными красителями (FITC, PE, PerCP), и изотипических контролей («R&D Systems», США). Анализ полученных данных осуществляли при помощи программного приложения BD Cell CellQuest for Mac OS® X.

Обработку полученных результатов проводили на основе общепринятых статистических методов с помощью программы SPSS 11.5 for Windows. Различия между независимыми выборками оценивали с помощью критерия Стьюдента или Манна-Уитни, достоверность рассчитывали при р < 0,05. Данные представляли в виде медианы и квартилей Mе (Q1-Q2).

Результаты исследования и их обсуждение

В ходе эксперимента было показано, что уровень миелоидных DC, экспрессирующих HLA-DR, у больных туберкулезом легких (ТЛ) статистически не отличался от такового в группе контроля. Однако процентное содержание трансформированных из моноцитов периферической крови DC, несущих одну из костимуляторных молекул семейства В7 - CD80+ и CD86+ DC, у больных ТЛ было значимо ниже контрольных значений - в 26,7 и 2,3 раза соответственно. При этом относительная численность DC, одновременно экспрессирующих на своей поверхности обе молекулы (CD80+ CD86+ DC), у больных ТЛ оказалась в 1,6 раза ниже аналогичного показателя у здоровых доноров (таблица).

Исследование иммунофенотипа Т-лимфоцитов у больных туберкулезом легких позволило зарегистрировать снижение (в 1,4 раза) общего количества клеток, несущих поверхностный маркер CD3 (CD3/TCR +), по сравнению с аналогичным параметром у здоровых доноров (см. таблицу). Наряду с этим, в группе обследованных лиц с туберкулезной инфекцией отмечалось уменьшение (практически в 2 раза по сравнению с нормой) числа лимфоцитов, экспрессирующих молекулу CD28 (таблица). Кроме того, у больных ТЛ устанавливалось резкое снижение процентного числа CD3+ CD28+ клеток, содержащих внутриклеточный IL-2, по сравнению с таковым в контрольной группе (см. таблицу).

Фенотипическая характеристика Т-лимфоцитов и зрелых миелоидных дендритных клеток, трансформированных из моноцитов периферической крови, у здоровых и больных туберкулёзом лёгких, Ме (Q1-Q3)

Параметры

Группа исследования

здоровые доноры (n = 25)

больные туберкулезом легких (n = 50)

Количество HLA-DR+ дендритных клеток, %

90,73 (87,61-93,76)

83,90 (81,31-94,35)

Количество CD80+ дендритных клеток, %

4,00 (2,25-5,75)

0,15 (0-1,70)

Р < 0,05

Количество CD86+ дендритных клеток, %

63,81 (44,37-67,78)

28,07 (22,57-36,20)

Р < 0,05

Количество CD80+ CD86+ дендритных клеток, %

30,10 (26,33-32,68)

19,15 (11,50-22,90)

Р < 0,05

Количество CD3(TCR) + лимфоцитов, %

76,48 (71,27-82,29)

56,70 (49,45-62,40)

Р < 0,001

Количество CD28+ лимфоцитов, %

33,13 (28,27-42,18)

15,25 (10,17-19,69)

Р < 0,001

Количество CD3+ CD28 + IL-2+ лимфоцитов, %

18,88 (14,72-22,99)

9,89 (6,90-13,85)

Р < 0,001

Примечание: Р - уровень статистической значимости различий по сравнению с показателями у здоровых доноров.

Полученные нами результаты свидетельствуют о недостаточной функциональной активности как DC, так и Т-лимфоцитов у больных ТЛ. Как указывалось ранее, CD3/TCR-молекулы необходимы для восприятия информации об антигене от DC и включения первого сигнала активации Т-клеток. Снижение общего числа CD3/TCR-позитивных лимфоцитов, вероятно, является главной причиной дизрегуляции иммунного ответа на МВТ и может быть связано с нарушением процессов пролиферации Т-клеток и их гибелью путем запуска программы апоптоза [2, 6, 9, 10].

Мы уже отмечали ранее, что костимуляторные молекулы CD80 и CD86 с поверхности DC передают второй активационный сигнал на молекулу CD28 Т-лимфоцита, который в комплексе с сигналом от CD3/TCR через серию каскадных реакций приводит к активации транскрипционных факторов. Последние индуцируют экспрессию генов, ответственных за секрецию иммуноцитокинов и их рецепторов, необходимых для полноценной активации Т-лимфоцитов, их дифференцировки и клональной экспансии [6, 14]. Так, например, сигналы с молекул CD28 и TCR-рецептора являются определяющим фактором для активации транскрипции генов IL-2 (IL2) и IFNγ (IFNG). Установлено, что недостаточное или полное отсутствие взаимодействия CD28 с CD80/CD86 провоцирует формирование гипоэргии и анергии Т-лимфоцитов, приводящих в итоге к гипосекреции IL-2 - основного активирующего и ростового фактора для Т-клеток, и их гибели путем апоптоза [1, 6, 10, 12]. Механизм реализации апоптоза в данном случае зависит от экспрессии апоптотического фактора FasL в ответ на «неправильный» антигенный стимул, определяющей гибель наивного Т-лимфоцита [3, 4, 8, 11]. Вероятно, именно данный механизм лежит в основе выявленной нами Т-лимфоцитопении, о чем могут свидетельствовать низкие показатели численности CD28 + и CD3+ CD28+ IL-2+ лимфоцитов, а также CD80+ , CD86+ и CD80+ CD86+ DC у больных ТЛ, установленные в настоящем исследовании (см. таблицу).

Кроме того, показано, что вирулентные микобактериальные штаммы обладают способностью ингибировать экспрессию костимуляторных молекул CD80, CD86 и, таким образом, отменять сигнал, «разрешающий» активацию Т-хелперных клеток, участвующих в реакциях клеточно-опосредованного иммунитета, что также вносит вклад в уменьшение численности Т-лимфоцитов. Обладающие плюрипотентностью DC способны не только активировать, но и подавлять Т-клеточные иммунные реакции в результате их альтернативной активации в присутствии Тh2-цитокинов. Одним из фенотипических признаков альтернативно активированных DC является низкая экспрессия молекул CD80, CD86. Подобный функциональный дефект DC может быть обусловлен как прямым воздействием МВТ, так и индуцируемой микобактериальными токсинами генерацией иммуносупрессорных DC из моноцитов, которые рекрутируются в очаг туберкулезной инфекции из периферической крови [4]. Вероятно, именно этим фактом можно объяснить установленное в настоящем исследовании уменьшение численности CD80+, CD86 + и CD80 + CD86 + DC, трансформированных из моноцитов крови больных ТЛ (см. таблицу).

Заключение

Таким образом, в ходе проведенного исследования показано, что при туберкулезе легких имеет место дефицит на DC и Т-лимфоцитах молекул, участвующих в формировании иммунологического синапса, следствием чего может быть нарушение межклеточных взаимодействий, реализации индуктивной фазы иммунного ответа и, как результат, недостаточность IL-2-синтетической функции Т-клеток. По-видимому, данные нарушения связаны с длительной персистенцией микобактериального антигена в организме больных и непосредственным негативным влиянием МВТ на иммунокомпетентные клетки.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (ГК № 16.512.11.2046 от 14.02.2011 г.), РФФИ (Проект № 11-04-98057-р), Совета по грантам при Президенте РФ для ведущих научных школ (16.120.11.614-НШ) и на средства персонального гранта от компании ОПТЭК по поддержке молодых ученых 2012 г. (договор от № 8/11 КЦ от 10 апреля 2012 г.).

Рецензенты:

Филинюк О.В., д.м.н., зав. кафедрой фтизиатрии и пульмонологии ГБОУ ВПО СибГМУ Минздрава России, г. Томск:

Зима А.П., д.м.н., профессор кафедры молекулярной медицины и клинической лабораторной диагностики ГБОУ ВПО СибГМУ Минздрава России, г. Томск.

Работа поступила в редакцию 10.12.2012.