Научный журнал
Фундаментальные исследования
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

ЭФФЕКТИВНОСТЬ БАНКОВ: ОЦЕНКА ЗНАЧИМОСТИ ФАКТОРОВ НА ПРИМЕРЕ СЕЛЬСКИХ КОММЕРЧЕСКИХ БАНКОВ КНР

Цзигээр Ш. 1 Соколова А.Н. 1 Королёва Е.В. 1
1 ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Финансовая система Китая самобытна и структурно сложна. В ходе анализа нами был выявлен пробел в научных исследованиях, посвященных эффективности сельских коммерческих банков КНР, поэтому мы сфокусировались на изучении данного вида кредитных организаций. Кроме того, они играют ключевую роль в удовлетворении потребностей сельских регионов и экономики страны, что объясняет актуальность и цель представленного исследования, а именно анализ влияния факторов на эффективность функционирования сельских коммерческих банков Китая. Основной методологической базой является регрессионный анализ. Выборка включала данные о деятельности 9 сельских коммерческих банков КНР в период с 2009 по 2020 год. Оценка коэффициентов модели проводилась с помощью метода наименьших квадратов, модели с фиксированными и случайными эффектами. В результате построения эконометрических моделей были выявлены следующие статистически значимые факторы – натуральный логарифм активов, отношение просроченного кредита к общей сумме кредита и отношение операционных расходов к операционным доходам. Полученные результаты имеют практическое значение и позволяют оценить важность выбранных в ходе исследования факторов в формировании эффективности функционирования сельских коммерческих банков КНР.
сельские коммерческие банки
эффективность
регрессионная модель
детерминанты
КНР
1. Zhang J. Study on the Factors of Profit-Making Ability of Commercial Banks in China. Master’s thesis, Chongqing University, Chongqing, China, 2009. 78 p.
2. Nizam E., Ng A., Dewandaru G., Nagayev R., Nkoba M.A. The impact of social and environmental sustainability on financial performance: A global analysis of the banking sector // Journal of Multinational Financial Management. 2019. Vol. 49. P. 35-53.
3. Shair F., Shaorong S., Kamran H.W., Hussain M.S., Nawaz M.A., Nguyen V.C. Assessing the efficiency and total factor productivity growth of the banking industry: do environmental concerns matters? // Environmental Science and Pollution Research. 2021. Vol. 28. P. 20822-20838.
4. Haralayya B., Aithal P.S. Factors Determining The Efficiency In Indian Banking Sector: A Tobit Regression Analysis // International Journal of Science & Engineering Development Research. 2021. Vol. 6, Is. 6. P. 1-6.
5. Ali M., Puah C.H. The internal determinants of bank profitability and stability: An insight from banking sector of Pakistan // Management research review. 2019. Vol. 42, Is. 1. P. 49-67.
6. Qu X. Analysis on the Factors of Profit-Making Ability Model of Commercial Banks in China. Master’s thesis, Southwestern University of Finance and Economics, Chengdu, China. 2007. 88 p.
7. Zhong J. Empirical Analysis of the Performance of Listed Commercial Banks in China. Master’s thesis, Southwestern University of Finance and Economics, Chengdu, China. 2013. 93 p.
8. Fu J. Analysis of the Influencing Factors of Commercial Banks’ Performance: Based on the Comparison between State-owned Commercial Banks and Joint-stock Commercial Banks // Times Finance. 2020. Vol. 21. P. 39-45.
9. Dao B. T. T., Nguyen K. A. Bank capital adequacy ratio and bank performance in Vietnam: A simultaneous equations framework // The Journal of Asian Finance, Economics and Business. 2020. Vol. 7, Is. 6. P. 39-46.
10. Chen X. Research on Performance and Influencing Factors of Listed Commercial Banks. Master’s thesis, Tianjin University of Commerce, Tianjin, China, 2016. 75 p.

Китай является одной из крупнейших аграрных стран в мире, имеющих рекордные показатели роста экономики. Сельские финансовые учреждения оказывают финансовые услуги хозяйствующим субъектам и содействуют экономическому развитию сельских территорий. К ним относятся сельские коммерческие банки, сельские кооперативные банки, сельские кредитные кооперативы, сельские банки и сельские кооперативы фондов. По результатам литературного обзора было выявлено, что анализ финансовой системы Китая в большинстве случаев ограничивается крупнейшими государственными банками. Остальные категории банков остаются за рамками существующих исследований. Вышесказанное определяет актуальность данного анализа. Таким образом, целью исследования является оценка влияния факторов на эффективность функционирования сельских коммерческих банков КНР.

Как было сказано ранее, большинство эмпирических исследований банковской системы Китая сосредоточено на анализе отрасли в целом или на коммерческих банках, являющихся крупнейшими мировыми лидерами. Zhang [1], основываясь на данных 14 крупных коммерческих банков, доказал, что эффективность их деятельности зависит не только от внутренних факторов, но и от внешних. Аналогичные результаты были получены Nizam и др. [2] и Shair и др. [3]. Напротив, в ряде исследований была выявлена значимость внутренних факторов [4-5]. Qu [6] доказал, что коэффициент достаточности капитала, ликвидность и размер банка оказывают существенное влияние на его деятельность. Zhong [7] пришел к аналогичным выводам. Fu [8] с помощью регрессионного анализа установил следующее: ставка по просроченным кредитам влияет на результаты деятельности коммерческих банков, а коэффициент темпов роста ВВП положительно коррелирует с результатами, но не имеет существенного значения. Некоторые ученые не включали внешние факторы в исследование. Например, Dao [9] выявил, что внутренние факторы, такие как уровень риска активов и коэффициент достаточности капитала, влияют на эффективность банков. Однако, вопреки приведенному выше исследованию, Qu [6] и Chen [10] доказали, что ликвидность не является определяющим фактором в отношении эффективности кредитных организаций.

По результатам литературного обзора нами был сформулирован пул внутренних и внешних факторов-переменных, которые потенциально могут оказать влияние на эффективность функционирования сельских коммерческих банков Китая.

Материал и методы исследования

Основной методологической базой исследования является регрессионный анализ. Выборка исследования представляет собой панельные данные, включающие 80 наблюдений по 9 сельским коммерческим банкам КНР в период с 2009 по 2020 год.

В таблице 1 представлено описание зависимых и независимых переменных, выбранных для проведения регрессионного анализа, а также представлена описательная статистика.

В качестве показателей эффективности функционирования сельских коммерческих банков КНР было выбрано два показателя – рентабельность собственного капитала (ROE) и рентабельность активов (ROA). Выбор обусловлен частотой использования показателей в исследованиях и их общепризнанностью. Независимые переменные характеризуют как внутреннюю, так и внешнюю среду банков.

Результаты описательной статистики показывают, что в анализируемой выборке банки имеют средний ROE – 13,00% (при стандартном отклонении 3,68) и средний ROA – 0,96% (при стандартном отклонении 0,25). Кроме того, стоит отметить высокое значение переменных OEOI и LIQ, равное 12,17 и 18,16 соответственно, что указывает на то, что значения этих переменных сильно варьируются в выбранном временном периоде.

Таблица 1

Исходные данные для проведения регрессионного анализа

Переменная

Описание переменной

Среднее

Стандартное отклонение

Минимум

Максимум

Зависимые переменные

ROE

Рентабельность собственного капитала

13

3.68

7.1

21.81

ROA

Рентабельность активов

0.96

0.25

0.55

1.8

Независимые переменные

Внешние факторы:

LNGDP

Натуральный логарифм ВВП

15.64

0.58

13.93

16.22

INFL

Уровень инфляции

2.33

0.94

-0.7

5.4

Внутренние факторы:

LNA

Натуральный логарифм активов

11.9

0.7

10.73

13.84

DTAR

Отношение депозита к общей сумме активов

73.4

6.83

59.38

92.54

CAR

Коэффициент достаточности

капитала

13.64

1.34

8.75

16.81

NPL

Отношение просроченного

кредита к общей сумме кредита

1.54

0.49

0.59

2.75

LLP

Отношение резерва на покрытие убытков к общей сумме кредита

3.53

0.96

1

5.55

OEOI

Отношение операционных расходов к операционным доходам

56.65

12.17

28.22

78.33

LIQ

Ликвидность (отношение текущих активов к текущим обязательствам)

58.03

18.16

29.03

99.05

Источник: составлено авторами.

Таблица 2

Корреляционная матрица

 

ROE

ROA

LNA

DTAR

CAR

NPL

LLP

OEOI

LIQ

LNGDP

ROE

1.00

                 

ROA

0.85

1.00

               

LNA

-0.32

-0.35

1.00

             

DTAR

0.06

0.13

-0.40

1.00

           

CAR

-0.40

-0.21

0.02

-0.18

1.00

         

NPL

-0.25

-0.29

-0.04

0.27

-0.18

1.00

       

LLP

-0.17

-0.19

0.06

0.11

-0.11

0.68

1.00

     

OEOI

-0.53

-0.42

-0.22

-0.07

0.17

0.20

0.27

1.00

   

LIQ

-0.18

-0.33

0.41

-0.25

0.25

-0.19

-0.19

-0.34

1.00

 

LNGDP

-0.68

-0.69

0.37

-0.08

0.28

0.02

0.16

0.30

0.32

1.00

INFL

0.42

0.31

-0.21

0.19

-0.05

-0.26

-0.05

-0.38

0.13

-0.13

Источник: составлено авторами.

missing image file (1)

missing image file (2)

Значение стандартного отклонения DTAR выше, чем у других переменных, и равно 6,83. Стандартные отклонения остальных объясняющих переменных имеют несущественные различия.

В рамках исследования нами были построены следующие модели: модель по методу наименьших квадратов (POOL), модель с фиксированными эффектами (FE) и модель со случайными эффектами (RE). Данные модели используются отдельно для рентабельности собственного капитала и рентабельности активов.

Общий вид моделей представлен в формулах 1 и 2.

Стоит отметить, что для проверки модели с фиксированными эффектами используется критерий Фишера и тест Вальда, для случайных эффектов – тест Бреуша – Пагана и тест множителей Лагранжа. Выбор между данными моделями проводится на основе теста Хаусмана.

Для исключения присутствия в моделях мультиколлинеарных факторов нами была построена корреляционная матрица. Результаты представлены в таблице 2.

Анализ результатов построения корреляционной матрицы позволил выявить отсутствие мультиколлинеарных факторов, включаемых в одну регрессионную модель.

Результаты исследования и их обсуждение

В результате анализа были построен ряд регрессионных моделей с использованием зависимых переменных ROA и ROE в отдельности. Напомним, что для каждой переменной было построено три модели: методом наименьших квадратов (POOL), модель с фиксированными эффектами (FE) и модель со случайными эффектами (RE). Результаты для ROE представлены в таблице 3. Отметим, что в результате модель с фиксированными эффектами (FE) оказалась предпочтительнее для ROE, нежели остальные модели.

Для модели с фиксированными эффектами коэффициент детерминации составляет 0.87, то есть модель является довольно качественной. NPL имеет отрицательный значимый коэффициент на уровне 0.1%. OEOI имеет отрицательный значимый коэффициент на уровне 1%. Переменные LNA и INFL имеют отрицательные значимые коэффициенты на уровне 5%. Остальные переменные признаны статистически незначимыми.

Таблица 3

Результаты регрессионного анализа для ROE

Модели

POOL

RE

FE

LNA

-0.16

-0.1593

-5.72**

 

-1.36

-1.36

-2.25

DTAR

-0.04

-0.04

-0.04

 

-0.04

-0.04

-0.05

CAR

-0.11

-0.11

-0.30

 

-0.23

-0.23

-0.21

NPL

-2.28****

-2.28****

-4.44****

 

-0.58

-0.58

-0.99

LLP

0.98***

0.98***

0.19

 

-0.32

-0.32

-0.39

OEOI

-0.13****

-0.13****

-0.11***

 

-0.03

-0.03

-0.04

LIQ

-0.00

-0.00

0.00

 

-0.01

-0.01

-0.02

LNGDP_P

-8.47***

-8.47****

0.17

 

-2.5636

-2.5636

-3.55

INFL

-0.45

-0.45

-0.64**

 

-0.29

-0.29

-0.29

_cons

160.70****

160.70****

98.43***

 

-25.35

-25.35

-29.38

r2_a

0.85

 

0.81

r2_w

 

0.83

0.87

r2_o

 

0.88

0.38

r2_b

 

1

0

N

57

57

57

N_g

 

9

9

* p < 0.1; ** p < 0.05; *** p < 0.01; **** p < 0.001

Источник: составлено авторами.

В таблице 4 представлены результаты регрессии для ROA. Модель с фиксированными эффектами (FE) также оказалась предпочтительнее для ROA согласно проведенным тестам.

Для модели с фиксированными эффектами коэффициент детерминации находится на уровне 0.78. Отметим, что полученное значение ниже, чем для модели с ROE. LNA и NPL имеют отрицательные значимые коэффициенты на уровне 1%, равные -0,55 и -0,28 соответственно. Переменная OEOI имеет отрицательный значимый коэффициент на уровне 10%. Остальные объясняющие переменные не значимы.

Таким образом, в моделях с зависимыми переменными ROE и ROA положительная зависимость не была выявлена ни с одним из анализируемых факторов. Подробнее проанализируем полученные результаты, оказавшие негативное влияние на исследуемые факторы в каждой из моделей.

Таблица 4

Результаты регрессионного анализа для ROA

Модели

POOL

RE

FE

LNA

-0.23*

-0.23*

-0.55***

 

-0.12

-0.12

-0.20

DTAR

0.00

0.00

0.00

 

0.00

0.00

0.00

CAR

0.01

0.01

0.00

 

-0.02

-0.02

-0.02

NPL

-0.26****

-0.26****

-0.27***

 

-0.05

-0.05

-0.09

LLP

0.07**

0.07**

0.03

 

-0.03

-0.03

-0.04

OEOI

0.00

-0.01

-0.01*

 

0.00

0.00

0.00

LIQ

0.00

0.00

0.00

 

0.00

0.00

0.00

LNGDP_P

-0.28

-0.28

0.27

 

-0.22

-0.22

-0.32

INFL

-0.04

-0.04

-0.02

 

-0.02

-0.02

-0.03

_cons

8.87****

8.87****

4.28

 

-2.21

-2.21

-2.64

r2_a

0.77

 

0.69

r2_w

 

0.76

0.78

r2_o

 

0.82

0.16

r2_b

 

1

0

N

57

57

57

N_g

 

9

9

* p < 0.1; ** p < 0.05; *** p < 0.01; **** p < 0.001

Источник: составлено авторами.

Натуральный логарифм активов (LNA). С помощью данного показателя оценивается влияние размера банка на его производительность. В случае с сельскими коммерческими банками оно оказалось негативным. Это может быть объяснено тем, что небольшие банки могут достичь эффекта масштаба, увеличивая размер своих активов до определенного уровня, а затем дальнейшее увеличение активов приводит к снижению производительности по ряду причин, например из-за неэффективности функционирования или использования ресурсов.

Отношение просроченного кредита к общей сумме кредита (NPL). Сельские коммерческие банки, как правило, имеют относительно небольшие чистые активы, низкие возможности по борьбе с рисками и управления ими. В соответствии с требованием об ужесточении контроля регулирующих органов КНР в выявлении неработающих активов, риск просроченных кредитов значительно увеличился. Кроме того, клиентами сельского коммерческого банка в основном являются физические лица, связанные с сельским хозяйством, а также малые и средние предприятия, имеющие низкую устойчивость к риску. Следует отметить, что в условиях стихийных бедствий и депрессии в период COVID-19 доля просроченных кредитов значительно увеличилась.

Отношение операционных расходов к операционным доходам (OEOI). Чем ниже значение коэффициента OEOI, тем ниже расходы банка на единицу дохода, что указывает на способность банка получать доход выше. С точки зрения долгосрочной стабильной работы банков, более высокие операционные расходы могут использоваться для инвестиций в инфраструктуру, технологические системы и человеческий капитал, а также с целью повышения уровня управления рисками.

Заключение

Таким образом, полученные в ходе исследования результаты могут быть использованы для прогнозирования динамики изменения показателей рентабельности собственного капитала и активов при изменении выбранных факторов. Стоит отметить, что данные модели имеют практическую значимость для разработки мероприятий по повышению эффективности функционирования банков.

Исследование имеет ряд ограничений, связанных с выбором конкретного вида банков и страны, а именно сельских коммерческих банков Китая. Данный анализ было бы интересно провести для банков других стран. Кроме того, будущие исследования могут быть направлены на расширение временного интервала и количества независимых факторов.


Библиографическая ссылка

Цзигээр Ш., Соколова А.Н., Королёва Е.В. ЭФФЕКТИВНОСТЬ БАНКОВ: ОЦЕНКА ЗНАЧИМОСТИ ФАКТОРОВ НА ПРИМЕРЕ СЕЛЬСКИХ КОММЕРЧЕСКИХ БАНКОВ КНР // Фундаментальные исследования. – 2023. – № 4. – С. 35-39;
URL: https://fundamental-research.ru/ru/article/view?id=43448 (дата обращения: 23.07.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674