Из практики эксплуатации оптических волокон известен эффект точечного разрушения протяженного участка световода при интенсивных тепловых воздействиях, например, попадании в кабель молнии. Данное явление может быть объяснено локальным тепловым воздействием, приводящим к изменению оптических характеристик волокна, что вызывает эффект фокусировки излучения до интенсивностей, превосходящих порог разрушения материала. Преобладающим механизмом возникновения повреждений в волокне является тепловой механизм. При нагреве выше 1000○С резко возрастает показатель поглощения, однако, этот механизм не объясняет периодического характера разрушения волокна. Однако такой тип разрушений может возникнуть из-за того, что в сердцевине возникает фокусирующая тепловая линза и интенсивность излучения резко возрастает. Совместное воздействие - увеличение показателя поглощения и интенсивности света вызывает значительный рост выделяемого тепла, что может привести к разрушению волокна.
Считаем, что в начальный момент времени t=0 по периметру оболочки волокна радиусом b внешним источником выделяется энергия с интенсивностью теплового импульса на единицу длины Q. Изменение температуры в среде подчиняется дифференциальному уравнению, получающемуся из уравнения теплового баланса. В сферических координатах оно имеет вид:
(1)
где ΔT - рост температуры среды, r - радиальная координата, D = k/(cρ) - коэффициент температуропроводности, k - коэффициент теплопроводности, c - удельная теплоемкость, ρ - плотность вещества.
С учетом принятых приближений случая решение уравнения (1) имеет вид:
(2)
где I0 - модифицированная функция Бесселя. Рост температуры приводит к изменению показателя преломления среды - ∆n=(∂n/∂T) ∆Т. В обычных волокнах, в частности в кварце, показатель преломления n уменьшается (∂n/∂T<0).
Пусть показатель преломления уменьшается от центра волокна к краю сердцевины в виде функции:
(3)
где a - радиус сердцевины волокна, Δ - относительное изменение показателя преломления сердцевины Δ = (n0 - n(a))/n0. Тогда в линейном приближении тепловое воздействие на показатель преломления волокна может быть представлено в виде (рис. 1):
(4)
Траектория луча, распространяющегося в градиентном волокне, описывается выражением:
(5)
из которого следует что, при распространении оптического излучения по волокну происходит его периодическая «фокусировка». Рассмотрим свет с гауссовым распределением интенсивности по сечению - I(r)=I0 exp(-r2/w2), где w - характерный размер гауссового пучка, I0 - интенсивность на оси пучка. Для описания его распространения удобно использовать комплексный параметр пучка q, который вводится следующим образом:
, (6)
R - радиус кривизны волнового фронта. Разделяя действительную и мнимую части, выразим w в виде соотношения:
(7)
Предположим, на входе в среду мы имеем плоскую волну (R = ∞), т.е. q1=iπw2/λ. В фокусе фронт волны тоже будет плоским - q2=iπv2/λ, где v - минимальный размер пучка. Параметры q2 и q1 связаны между собой через параметры лучевой матрицы среды:
(8)
Матрица среды с квадратичным распределением показателя преломления имеет вид:
(9)
Подставив q1, q2 и элементы матрицы (9) в (8), получаем уравнение:
(10)
Откуда минимальный размер пучка v =(λa)/(πw2 ), координаты этих областей zm=2pma/ , расстояние между областями максимального сжатия пучка ~5мм.
Обычно в градиентных волокнах Δ ~ 10-3 ÷ 10-2, что соответствует минимальному размеру пучка 15-50 мкм. В случае нагрева оболочки волокна до Т~1000 К Δ может составить 0,2 ÷ 0,3 и характерный размер пучка уменьшится до 3 - 5 мкм..
Возрастание интенсивности за счет уменьшения размера пучка (I = P/(πw2)), может привести к тепловому или электрическому пробою материала волокна. Поскольку такое возрастание происходит периодически, то возможен периодический пробой волокна через равные интервалы.
Таким образом, интенсивный нагрев наружного слоя оболочки волокна может привести к резкому уменьшению показателя преломления внешней части волокна. Это может привести к фокусировке света, направляемого этим волокном. Интенсивность на оси периодически возрастает на порядок и выше и при достаточно высоких мощностях излучения это может привести к периодическому пробою и разрушению волокна в ряде периодически расположенных по оси волокна точках.