Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

ASSESSMENT OF THE IMPACT OF R&D ON THE ECONOMIC DEVELOPMENT OF RUSSIAN REGIONS

Makarova О.М. 1 Koroleva E.V. 1 Popova S. 1 Efremova M.O. 1
1 Peter the Great St. Petersburg Polytechnic University
To date, the influence of various factors on the economic development of regions is actively discussed in modern economics. Researchers focus on such aspects as digitalization, innovation potential, social and demographic factors and predict their impact on the economic growth of Russian regions. Within the framework of this study, the authors focused on filling the gap in research in terms of analyzing the impact of R&D on the economic growth of Russian regions. The research used general scientific research methods (analysis, synthesis, observation), as well as correlation and regression analysis. The information base of the study was data obtained from statistical collections of state and regional bodies. In general, we have received mixed results regarding the impact of the activities of research institutes on the economic development of the regions. On the one hand, correlation and regression analysis revealed a positive dependence of the GRP of the regions on the number of patent applications received and patents granted, the proportion of fundamentally new technologies, the share of researchers under 39 years of age in the total number of researchers. On the other hand, such indicators of the activity of research institutes as the number of advanced production technologies developed, the number of doctoral students and candidates of sciences negatively affect the level of GRP of the regions. The theoretical significance of the study is to identify R&D factors that are significant in the economic development of regions and complement previous studies focused on analyzing the impact of similar factors on territorial development. The results are also of practical importance in the field of planning research activity and assessing its impact on the economic development of regions. The results obtained can be applied in the strategic planning of the development of the activities of research institutes, as well as in the management of state R&D programs.
gross regional product
economic development of territories
research institutes
R&D
regions of Russia

Экономическое развитие регионов России осуществляется в условиях ограниченности ресурсов и мобильности кадров, а также с учетом постоянно меняющихся технологических укладов и политических рисков. Анализу влияния тех или иных факторов (политических, социальных, демографических и др.) на экономическое развитие регионов посвящено множество исследований. Тем не менее влияние НИОКР на экономическое развитие регионов России остается недостаточно изученным, что подтверждается литературным обзором по исследуемой проблематике.

Большинство исследований на сегодняшний день сфокусированы относительно влияния системы высшего образования, как важной составляющий НИОКР, на экономическое развитие регионов. В частности, ряд исследователей [1, 2] выявили, что наиболее важными факторами регионального экономического развития являются размер университетов, степень интернационализации студентов, а также исследовательская продуктивность университетов. Более того, на сегодняшний день университеты являются основным источником инноваций. К такому мнению пришли P. Mueller [3] и Н.Г. Федотова [4] в своих исследованиях, доказав, что отношения между университетами и компаниями реального сектора улучшают региональные экономические показатели. Исследователи A. Bramwell и D. Wolfe [5] также подчеркнули положительное влияние университетов в контексте экономического развития территорий. Тем не менее ряд научных групп [6, 7] обратили внимание на важность научной составляющей в университетах. Например, многие региональные университеты в России традиционно ориентированы на образовательную деятельность, что в целом не оказывает положительного влияния на ВРП регионов [8].

Остальным составляющим НИОКР уделено гораздо меньше внимания в публикациях как российских, так и зарубежных исследователей. Тем не менее отметим ряд исследований. Д.А. Федотов и Е.С. Ткач [9] доказывают, что с точки зрения затрат наиболее благоприятно на экономическое развитие регионов влияет использование уже запатентованных разработок, чем инвестирование в новые исследования. М.В. Чистова [10] получает противоположные результаты и доказывает, что на региональном уровне развитие валового регионального продукта находится в прямой зависимости от уровня затрат на НИОКР. Г.А. Унтура и его исследовательская группа [11] приходят к выводу, что НИОКР оказывает значительное влияние только в отдельных специализированных производствах, поэтому эффект на экономическое развитие регионов может быть неоднозначным. Таким образом, литературный обзор выявил, что в целом нет в научном сообществе единого мнения относительно влияния НИОКР на экономическое развитие регионов. Поэтому целью данного исследования является оценка влияния научно-технического развития региона на его экономический рост.

В рамках исследования мы постараемся заполнить выявленный исследовательский пробел, сконцентрировавшись на следующих составляющих НИОКР: количество организаций, выполняющих научные исследования и разработки; патентная активность в регионе; количество разработанных передовых производственных технологий, количество докторантов и кандидатов наук, а также доля исследователей возрастом до 39 лет. Выбор данных составляющих объясняется доступностью статистической информации, а также отсутствием исследований, нацеленных на анализ влияния выбранных показателей на экономический рост регионов.

Информационной базой исследования являются данные органов государственной и региональной статистики за 2017–2019 гг. Методологической базой исследования являются общенаучные методы исследования, а также корреляционно-регрессионный анализ. Выбор инструментария исследования объясняется распространенностью и общепризнанностью данных подходов, что подтверждается использованием их в ряде исследований, нацеленных также на исследование экономического развития регионов.

Основной гипотезой представленного исследования является следующее: развитие НИОКР оказывает положительное влияние на экономическое развитие регионов.

Материалы и методы исследования

В представленном исследовании использовались панельные данные по 85 субъектам Российской Федерации в период с 2017 по 2019 г. Таким образом, в совокупности исследование базировалось на 255 наблюдениях.

В результате литературного обзора, а также исходя из экономического смысла, авторами были отобраны 6 факторов, характеризующих научно-исследовательскую деятельность в различных субъектах Российской Федерации, которые могут оказывать влияние на экономическое развитие регионов. В качестве переменной, отражающей экономическое развитие регионов, был выбран валовый региональный продукт. Таким образом, в табл. 1 представлены переменные, которые были использованы в рамках исследования.

Учитывая разный масштаб показателей и единицы измерения, авторы приняли решение перевести анализируемые показатели в относительные величины, нормировав их на население в регионах. Отметим также, что авторы исследования провели проверку связи между зависимой и независимыми переменными на линейность. При построении линейной регрессии предполагается, что связь между зависимой переменной и независимыми является линейной, в противном случае – строить линейную регрессию нецелесообразно.

Таблица 1

Исходные данные для построения регрессионной модели

Характеристика переменной

Обозначение переменной

Эндогенная переменная

Валовый региональный продукт

GRP

Экзогенные переменные

Организации, выполнявшие научные исследования и разработки

R_scienorg

Поступление патентных заявок и выдача патентов в России

R_patent

Разработанные передовые производственные технологии

R_developtech

Удельный вес докторантов и кандидатов среди населения

R_researcher

Удельный вес принципиально новых технологий в общем числе разработанных передовых производственных технологий

R_newtech

Доля исследователей до 39 лет в общей численности исследователей

R_young

Таблица 2

Результаты описательной статистики

Variable

Obs

Mean

Std. Dev.

Min

Max

R_scienorg

255

0.03

0.02

0.01

0.10

R_patent

255

0.13

0.10

0.01

0.62

R_developtech

255

0.01

0.02

0.00

0.21

R_researcher

255

0.22

0.17

0.03

1.00

R_newtech

255

9.57

19.74

0.00

100.00

R_young

255

0.42

0.10

0.00

0.66

GRP

255

13.14

1.10

10.71

16.79

Для проверки линейности была построена матрица рассеивания, где по зависимой переменной отложены стандартизированные остатки регрессии, а по независимым – значения предиктора, используемого в модели. Авторы исследования также проанализировали остатки по каждой из предикторных переменных в модели регрессии. Для этого были использованы стандартизированные остатки. В результате была выявлена слабая линейная взаимосвязь между выбранными переменными. Поэтому авторами исследования было принято решение прологарифмировать эндогенную переменную. Впоследствии была получена достаточно линейная взаимосвязь между выбранными переменными. Модель стала линейной по параметрам, что соответствует выполнению первого условия Гаусса – Маркова. Таким образом, мы привели к сопоставимому виду экзогенные и эндогенные переменные в рамках регрессионного анализа. Описательная статистика видоизмененных переменных приведена в табл. 2.

На основе данных, представленных в табл. 2, можно сделать вывод, что разброс значений относительно среднего в представленной выборке невелик для всех переменных, кроме R_newtech (удельный вес принципиально новых технологий в общем числе разработанных передовых производственных технологий). Для того чтобы проанализировать наличие выбросов для данной переменной, авторами была построена диаграмма размаха (ящик с усами), которая представлена на рисунке. Данный вид графика показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. Для построения диаграммы авторы использовали все анализируемые переменные, чтобы визуально сравнить одно распределение с другим. Расстояние между различными частями ящика позволяет определить степень разброса (дисперсии) и асимметрии данных, выявить выбросы.

С помощью диаграммы размаха нами было выявлено, что по показателю R_newtech больше всего присутствует выбросов, в связи с этим при построении регрессионных моделей было введено ограничение по данному фактору – меньше 40.

missing image file

Вертикально ориентированный график ящик с усами по исследуемым переменным в период с 2017 по 2019 г.

Таблица 3

Корреляционная матрица, содержащая оценки коэффициентов корреляции

 

GRP

R_scienorg

R_patent

R_developtech

R_researcher

R_newtech

R_young

GRP

1.00

           

R_scienorg

0.02

1.00

         

R_patent

0.50

0.26

1.00

       

R_developtech

-0.06

0.14

0.11

1.00

     

R_researcher

-0.43

0.01

-0.30

-0.02

1.00

   

R_newtech

0.10

-0.08

-0.01

-0.05

-0.01

1.00

 

R_young

0.42

-0.02

0.32

0.08

-0.64

-0.02

1.00

Для оценки влияния факторов на ВРП используется стандартная линейная модель множественной регрессии, где зависимая переменная объясняется при помощи факторов деятельности научно-исследовательских институтов. Все расчеты были произведены с помощью программного продукта Stata.

В процессе анализа были построены четыре регрессионные модели на основе разных временных рядов данных. Регрессионные модели были построены в период с 2017 по 2019 г. и для каждого исследуемого года отдельно.

Для того чтобы исключить статистическую взаимосвязь между исследуемыми экзогенными переменными, необходимо было провести корреляционный анализ переменных. Корреляционная матрица, представленная в табл. 3, иллюстрирует, что коллинеарные (линейно связанные) факторы отсутствуют, так как их значение не превышает |0,7|, что в свою очередь позволяет включать все выбранные факторы в уравнение регрессии.

Следующим этапом исследования было непосредственно построение регрессионных моделей. Поскольку в модель включено несколько объясняющих переменных, авторов больше интересовали переменные, которые оказывают наибольшее влияние на ВРП регионов. В связи с этим авторы провели постепенное исключение переменных. В частности, в каждом уравнении шаг за шагом были исключены переменные с наименьшим значением p-level, пока все объясняющие переменные в модели не стали статистически значимыми при p < 0,1.

В разделе с результатами модели, представленные в столбцах «a», отражают первичные регрессионные модели; модели, которые представлены в столбцах «b», отражают итоговые результаты. Отметим, что во всех оценках авторами была проконтролирована гетероскедастичность и были проанализированы стандартные ошибки для каждой переменной.

Таблица 4

Результаты влияния факторов деятельности научных институтов на валовый региональный продукт

Зависимые переменные

GRP2017

GRP2018

GRP2019

GRP2017-2019

Модель

1(a)

1(b)

2(a)

2(b)

3(a)

3(b)

4(a)

4(b)

Constant

12.70

***

12.76

***

12.02

***

11.10

***

11.27

***

10.64

***

12.09

***

11.95

***

 

(0.68)

 

(0.23)

 

(0.71)

 

(0.42)

 

(0.63)

 

(0.42)

 

(0.38)

 

(0.38)

 

R_scienorg

-9.05

     

-4.81

     

-6.57

     

-5.32

     
 

(7.23)

     

(6.87)

     

(6.07)

     

(3.78)

     

R_patent

4.25

***

3.81

***

4.15

***

3.99

***

4.89

***

4.66

***

4.33

***

4.11

***

 

(1.00)

 

(0.94)

 

(1.02)

 

(0.99)

 

(1.07)

 

(1.02)

 

(0.59)

 

(0.57)

 

R_developtech

-8.89

     

-7.91

*

   

-6.04

     

-7.02

**

-7.50

***

 

(6.53)

     

(4.66)

     

(3.92)

     

(2.72)

 

2.70

 

R_researcher

-1.59

**

-1.81

***

-1.04

     

0.59

     

1.10

***

-1.11

***

 

(0.71)

 

(0.55)

 

(0.76)

     

(0.71)

     

(0.41)

 

(0.41)

 

R_newtech

0.03

***

0.03

***

0.04

***

0.04

***

0.02

*

0.02

*

0.03

***

0.03

***

 

(0.01)

 

(0.01)

 

(0.01)

 

(0.01)

 

(0.01)

 

(0.01)

 

(0.01)

 

(0.01)

 

R_young

0.58

     

1.99

 

3.12

***

3.34

***

3.97

***

1.88

***

1.97

***

 

(1.26)

     

(1.28)

 

(0.99)

 

1.23

 

1.04

 

(0.71)

 

(0.71)

 

No. of obs.

82

 

82

 

80

 

80

 

78

 

78

 

240

 

240

 

Adj. R2

0.39

 

0.39

 

0.41

 

0.38

 

0.45

 

0.43

 

0.42

 

0.42

 

F stat.

9.98

***

18.16

***

9.99

***

17.43

***

11.29

***

20.19

***

29.99

***

35.44

***

Примечание. Модели, отмеченные буквой «а», представляют первичные регрессионные модели. Модели, отмеченные буквой «b», представляют итоговые результаты, включающие только статистически значимые факторы (табл. 1). Стандартные ошибки указаны в скобках. Статистическая значимость: ***p < 0,01, **p < 0,5, *p < 0,1

Результаты исследования и их обсуждение

Результаты анализа представлены в табл. 4. В соответствии с выдвинутой гипотезой факторы НИОКР оказывают неоднозначное влияние на экономическое развитие регионов России.

Представим итоговое уравнение на основе данных в период с 2017 по 2019 г., которые отражены в табл. 4:

GRP = 11,95 + 4,11Rpatent – 7,50Rdeveloptech – – 1,11Rresearcher + 0,03Rnewtech + 1,97Ryoung .

Отметим, что представленные модели в целом значимы, а построенные уравнения регрессии надежны. Если говорить о значимости отдельных переменных, то в табл. 4 продемонстрирован тот факт, что включенные в итоговые модели переменные статистически значимы на 1 % уровне значимости. Данные характеристики свидетельствуют о качестве полученных моделей. Также модели были проверены на наличие гетероскедастичности случайных ошибок. Полученные модели подтвердили нулевую гипотезу, что дисперсия однородна и остатки негетероскедастичны. Интерпретируем далее полученные результаты.

Количество патентных заявок и выданных патентов оказывает положительное влияние на экономический рост регионов. Отметим, что из всех анализируемых показателей НИОКР эта переменная имеет наибольшее положительное влияние. Напротив, рост количества разработанных передовых производственных технологий оказывает негативное влияние на экономический рост регионов. В плане оценки степени влияния этот показатель оказывает наибольшее негативное влияние на зависимую переменную. Если связывать эти две переменные с потенциальным объемом инвестиций, то разработка технологий требует гораздо больше ресурсов, нежели патентование уже полученных результатов. В этой части наше исследование частично поддерживает результаты, представленные в статье Д.А. Федотова и Е.С. Ткач [9].

Слабо негативное влияние также оказывает рост доли докторов и кандидатов наук в регионе на экономическое развитие регионов. Это может быть объяснено следующим образом. Согласно анализу научного потенциала регионов России [12], на сегодняшний день распределение показателя удельного веса кандидатов и докторов наук по регионам является однородным. Более того, средний возраст кандидата наук – 51 год, а доктора наук – 64 года. В 2017 г. была принята программа «Цифровая экономика РФ», которая определила тренд страны на цифровизацию. Возможно, для обеспечения экономического роста регионов требуется наличие перспективных квалифицированных кадров, заинтересованных в разработке в области ИТ. Данный аргумент подтверждается и результатами регрессионного моделирования: рост доли исследователей в возрасте до 39 лет приводит к экономическому росту регионов.

Также было выявлено, что удельный вес принципиально новых технологий в общем числе разработанных передовых производственных технологий приводит к экономическому росту регионов.

Заключение

Таким образом, гипотеза о том, что факторы деятельности научно-исследовательских институтов влияют на валовый региональный продукт регионов, была частично подтверждена. Нами были получены следующие результаты: поступление патентных заявок и выдача патентов в России, удельный вес принципиально новых технологий в общем числе разработанных передовых производственных технологий и также рост доли молодых исследователей оказывают позитивное влияние на ВРП регионов. В то же время такие показатели, как разработанные передовые производственные технологии, удельный вес докторантов и кандидатов среди населения, оказывают негативное влияние на ВРП регионов.

Также авторы пришли к выводу, что построенные в рамках исследования модели частично подтверждают результаты предыдущих публикаций. Полученные результаты могут быть использованы для разработки предложений и рекомендаций в части достижения высоких показателей валового регионального продукта путем воздействия на обозначенные факторы.

Обратим внимание, что в исследовании авторы ограничились только совокупным анализом регионов России, будущие направления исследований могут быть связаны с подобным анализом конкретных регионов страны и дополнить представленное исследование.

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-78-10123).