Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

METHODS OF TRAFFIC FLOWS MODELING

Potapova I.A. 1 Boyarshinova I.N. 1 Ismagilov T.R. 1
1 Perm National Research Polytechnic University
This paper presents an analytical overview of current methods of traffic flowmodelling. This work covers various ways of models systematization and attempts to apply a two-tier classification. The first classification tier deals with models’ accepted detail level, while the second tier reflects its functional role. Each class is represented by model examples reflecting their class’s properties in the best way. The first tier introduces three model classes based on their detail level: macroscopic, mesoscopic and microscopic models. Macroscopic models represent moving vehicles as a singular physical stream. Mesoscopic models are halfway between macro- and micro- approaches. Microscopic models describe characteristics of every vehicle within its stream. The presented models are analyzed, and their advantages and disadvantages are described in the paper.
models of traffic flow
classification of traffic models
macroscopic models
microscopic model
mezoscopic model
1. Buslaev A.P., Novikov A.V., Prihodko V.M., Tatashev A.G., Jashina M.V. Verojatnostnye I imitacionnye podhody k optimizacii avtodorozhnogo dvizhenija [Probability and simulation approaches to the optimization of road traffic]. Moscow, Mir, 2003. 368 p.
2. Gasanov, G.M. Upravlenie transportno-jekspluatacionnym sostojaniem avtomobilnyh dorog [Management of transport and operating state highways]. Moscow. MADI (GTU), 2004.
3. Gasnikov A.V., Klenov S.L., Nurminskij E.A., HolodovJa.A., Shamraj N.B.Vvedenie v matematicheskoe modelirovanie transportnyh potokov :ucheb. Posobie [Introduction to the mathematical modeling of traffic flows: Proc. benefit] Moscow. MFTI., 2010. 362 p.
4. Gutnov A.Je.,Shmuljan B.L. Macrosystems Theory and its Application.Springer, 1995. 340 p.
5. Zyrjanov V.V. Dorogi Rossii XXI veka, 2009. no. 3. pp. 37–40.
6. Kisljakov, V.M. Matematicheskoe modelirovanie I ocenka uslovij dvizhenija avtomobilej I peshehodov [Mathematical modeling and evaluation of the conditions of vehicles and pedestrians]. Moscow. 1979. 200 p.
7. Klinkovshtejn G.I. Metody ocenki kachestva organizaci idorozhnogo dvizhenija:ucheb. Posobie [Methods for assessing the quality of traffic management].Moscow, MADI, 1987.
8. Kuzin M.V. Imitacionnoe modelirovanie transportnyh potokov pri koordinirovannom rezhime upravlenija [Simulation of traffic flows at coordinated control mode]. Omsk, 2011. 143 p.
9. Kurzhanskij A.A., Kurzhanskij A.B., Varajja P. Trudy MFTI. 2010, no. 4, pp. 100–118.
10. Livshic V. V. Avtomatizacija processov gradostroitelnogo proektirovanija.1973. pp. 39–57.
11. Miheeva T.I., Miheev S.V., Bogdanova I.G. Nauchnoe obozrenie. Tehnicheskie nauki., 2014, no. 2 pp. 63–64.
12. Naumova N.A. Teoreticheskie osnovy I metody avtomatizirovannogo upravlenija transportnymi potokami sredstvami mezoskopicheskogo modelirovanija [Theoretical bases and methods of the automated traffic control mesoscopic modeling tools]. Volgograd, 2015.
13. Popkov Ju.S., Posohin M.V., Gutnov A.Je., Shmuljan B.L. Sistemnyj analiz I problem razvitija gorodov [System analysis and problems of urban development] Moscow. Nauka, 1983. 512 p.
14. Popkov Ju.S. Teorija makrosistem. Ravnovesnye modeli [The theory of macro. Equilibrium models] Moscow. LIBROKOM., 2013. 320 p.
15. Semenov V.V. Preprint Instituta prikladnoj matematiki Im. M.V. Keldysha RAN, 2004, no. 34.
16. Shvecov V.I., Avtomatika I Telemehanika, 2003, no.11, pp. 3–46.
17. Gazis D.C., Herman R., Potts R. B. Operations Research, 1959, no. 7(4), pp. 499–505.
18. Krug J., Spohn H. Phys. Rev. A. 1988. Vol. 83. 4271 p.
19. Ligthill M.J., Whitham F.R.S. Proc. of the Royal Society Ser. A. 1995. no. 1178. pp. 317–345.
20. Newell G.F. Oper. Res. 1961. Vol. 9. pp. 209–229.
21. Philips W.F. Transp. Plan. Technol. 1979. Vol. 5. рр. 131–138.
22. Savrasov M. Development of new approach for simulation and analysis of traffic flows on mesoscopic level: doctoral thesis. Riga, 2013. 161 p.
23. Wardrop J.G. Proc. Institution of Civil Engineers II. 1952. Vol. 1. pp. 325–378.
24. Wilson A.G. Transpn. Res. 1967. Vol. 1. pp. 253–270.

На сегодняшний день невозможно представить жизнь без дорожного сообщения. Транспортные системы обеспечивают необходимые связи внутри городов и между ними. Постоянный рост числа автомобилей вынуждает оптимизировать дорожную сеть так, чтобы удовлетворить большую часть потребностей города. Чтобы свести риск инвестиций к минимуму, нужно учесть закономерности развития системы дорог, рассредоточение нагрузки на ее отдельных участках. Потому особое значение принимает моделирование и оптимальное планирование дорожной сети. Различные способы моделирования транспортных потоков призваны решать наиболее распространенные транспортные проблемы. В большинстве случаев модели позволяют определять такие параметры, как интенсивность движения, среднюю скорость движения, задержки и потери времени. В настоящей работе предпринята попытка изучить существующие модели транспортных потоков и их классификации по различным признакам.

Классификации моделей транспортного потока

Модели, применяемые для анализа транспортных сетей, весьма разнообразны. При этом на данный момент не существует исчерпывающей классификации методов моделирования. Систематизации в зависимости от решаемых задач осуществлялись по разным признакам. К примеру, в зависимости от метода решения – на аналитические и имитационные [2, 6]; по методам представления данных – на динамические модели, работающие в реальном времени, и статические, в которых параметры усредняются за определенный интервал времени [16]. По временной шкале различают непрерывные и дискретные модели [17]. По типу представления процесса модели делят на стохастические, в основе которых лежит зависимость от случайного сочетания параметров, и детерминированные, в которых следующее состояние транспортного потока однозначно определяется на основе предыдущего [15]. Основываясь на функциональной роли моделей, можно условно выделить три основных класса [16]: прогнозные модели, имитационные модели, оптимизационные модели. Подобная классификация не отражает метод решения, а также допущения, положенные в основу модели.

Наиболее популярной является классификация по уровню детализации транспортного потока [22], где выделяют макроскопические модели, мезоскопические модели, микроскопические модели, субмикроскопические модели. Однако такая классификация не дает представления ни об области применения, ни о методе моделирования.

На взгляд авторов настоящей работы, возможна следующая классификация моделей транспортного потока по двум основным признакам: уровню детализации и методу моделирования.

– Макроскопические:

  • модели – аналоги (модель Лайтхилла и Уизема, модель Гриншилдса);

– Мезоскопические:

  • модели расчета матрицы межрайонных корреспонденций (гравитационная, энтропийная модели);
  • модели распределения потоков (модель равновесного распределения потоков и оптимальных стратегий);

– Микроскопические:

  • модели следования за лидером (модель оптимальной скорости, «модель умного водителя»);
  • клеточные автоматы.

Данная классификация учитывает как методы моделирования, так и степень детализации. Рассмотрим более подробно некоторые из вышеперечисленных моделей.

Макроскопические модели

Аналоговое моделирование описывает движение транспортных средств как движение специфической жидкости [9]. В процессе моделирования изучаются усредненные характеристики потока, такие как плотность, средняя скорость, интенсивность, но отдельные транспортные средства не рассматриваются. Макроскопические модели могут быть непрерывными, описываемыми дифференциальными уравнениями в частных производных, или дискретными. Гидродинамические модели могут учитывать или не учитывать инерцию. Модели, не учитывающие инерцию, нередко получают из уравнения неразрывности и рассматривают скорость как функцию плотности. Данное обстоятельство позволяет описывать движение локально равновесного потока [14]. Модели, представленные уравнениями Навье – Стокса, учитывают эффект инерции и описывают тенденцию автомобилистов ехать с желаемой скоростью.

Рассмотрим распространенные примеры методов, наиболее точно отражающих основные характеристики макроскопического подхода [3, 11]. Модель Лайтхилла – Уизема – Ричардса (LWR) [19] относится к моделям-аналогам, основана на уравнениях гидродинамики и выполнении закона сохранения массы, под массой подразумевают количество автомобилей. Модель LWR не работает при очень низких и высоких плотностях транспортного потока, неадекватна вблизи «узких мест» и перекрестков со светофорами. Но, несмотря на это, гидродинамический подход стал основой для более совершенных моделей. Так, Пэйн [18] в 1971 г. предложил описать динамическую зависимость с помощью дифференциального уравнения конвекционного типа (уравнение было выведено из модели следования за лидером). Модель Пэйна следует понимать как закон сохранения, но из-за того, что скорость не зависит от плотности, вводится правая часть уравнения – сохранение импульса. Филипс учел внутреннее давление потока, которое заставляет водителей реагировать аналогично действиям лидирующего автомобиля [21]. Модель Гриншилдса (1934) содержит линейную зависимость плотности от скорости. Позднее она была модифицирована Ричардсоном. В модели Гриншилдса при определении пропускной способности важно правильно выбрать скорость свободного движения. В противном случае большое значение приведет к завышенным результатам, что подтверждается в работе [11]. Две последние модели имеют одну особенность: чем ниже скорость свободного движения, тем больше расчетные данные соответствуют экспериментальным. Логарифмический тип зависимости между плотностью потока и скоростью движения имеют макромодели Гринберга и Эл-Хозаини [17]. Модель Гринберга имеет серьезный недостаток: если плотность транспортного потока стремится к нулю, то значение скорости может стать больше, чем скорость свободного движения. Модель Эл-Хозаини работает адекватно, если задана высокая плотность потока, а его скорость не меньше 17 км/ч. Модели Андервуда, Дрейка и Зырянова имеют экспоненциальный тип зависимости между плотностью и скоростью автомобильного потока. Эти модели имеют один общий недостаток: если значение плотности движения будет достаточно большим, то полученная интенсивность превысит фактическую. Степенную зависимость между плотностью и скоростью имеют модели Д. Дрю и Л. Пайпса [17]. Особенность этих моделей заключается в том, что они могут быть приспособлены к экспериментальным данным благодаря коэффициенту пропорциональности.

В результате применения макроскопических моделей обычно определяются время движения, средняя скорость, уровень загрузки сети, интенсивность движения. Моделирование на макроуровне имеет определенные достоинства [12]: невысокие требования к ЭВМ, высокая скорость расчетов. Однако обладает и недостатками: полученные результаты являются статичными и недостаточно точными; для решения задач сложно определять исходные данные.

Мезоскопические модели

Мезомоделирование описывает автотранспортные средства (АТС) достаточно точно, но при этом рассматривает их взаимодействие и поведение так же, как на макроуровне [10, 16, 13]. Одной из первых моделей, отражающих взаимодействие пары районов, которые порождают транспортные потоки (корреспонденции), считается гравитационная модель. Основой для ее создания послужил закон всемирного тяготения. К ее недостаткам можно отнести то, что суммарное количество корреспонденций связывается только с одной парой районов. Однако посещения могут зависеть от расположения района прибытия среди других районов. Этот недостаток учтен в моделях семейства конкурирующих центров. Использование концепции энтропии для решения транспортных задач было предложено Вильсоном [4, 24]. В основе этой модели лежит второй закон термодинамики [3]. Транспортная система схожа с физической тем, что в них имеется большое число неуправляемых элементов. Поэтому проблему определения корреспонденций предложено заменить максимизацией энтропии в транспортной системе [15].

В модели равновесного распределения предполагается, что все участники движения выбирают пути следования, исходя из минимальной цены поездки. В результате процесса «проб и ошибок» в системе устанавливается равновесное распределение потоков, обладающее свойствами, известными как требования Вардрупа [23]. Суть свойств заключается в следующем: при равновесном распределении автомобилей ни один участник движения не меняет свой путь, потому что цена поездки уже минимальна.

Основным достоинством перечисленных моделей является их сравнительная компактность. Однако эти модели имеют ряд недостатков: они охватывают лишь ограниченный набор параметров (скорость, задержки, очереди), слабо учитывают динамику транспортного потока.

Микроскопические модели

В этих моделях описывается движение каждой машины в отдельности. Микромодели стали популярными после появления мощных вычислительных компьютеров, потому что требовали большого объема расчетов. Такие модели хорошо подходят для представления движения по дороге с несколькими полосами, потому что могут описывать реалистичные правила перемещения автомобилей [5, 8, 15, 19]. Модель «следования за лидером» была одной из первых [1], разработали ее А. Решель (1950) и Л. Пайпс (1953). Основная идея заключена во влиянии головного автомобиля на следующие за ним машины. Влияние лидера косвенно выражено через зависимость оптимальной скорости от дистанции до впереди идущего автомобиля. С течением времени теорию разрабатывали и вносили изменения, в частности стали учитывать время реакции водителей, исследовали движение на многополосных дорогах, изучали устойчивость движения. В 1959 г. работники автоконцерна General Motors [7] предложили для описания одной полосы движения свою микроскопическую модель, с помощью которой можно получить фундаментальную диаграмму. Следующим шагом стала модель Ньюелла [20], представленная в 1961 г. Основное предположение заключается в следующем: у каждого водителя есть своя «безопасная» скорость движения, которая зависит от расстояния до лидера. В этой модели важно правильно выбрать функцию зависимости скорости от интервала между машинами. Время реакции водителей стоит выбирать с осторожностью, при слишком больших значениях времени реакции появятся столкновения, а при малых могут возникнуть нереалистичные ускорения. Две последние рассмотренные модели можно объединить в одну общую микромодель «разумного водителя» [3]. Она была предложена Трайбером в 1999 г. Движение в модели описывается как сочетание двух стратегий: ускорения и торможения. В зависимости от расстояния до впереди идущего автомобиля приоритет отдается одной из них. В модели умного водителя учитываются психофизические параметры людей, что помогает моделировать транспортные потоки более реалистично, случайно выбирая параметры автомобилистов.

Модели следования за лидером некорректно описывают динамику отдельного транспортного средства, что позволяет нам отнести их к мезоскопическим моделям. Также в моделях есть парадокс – если отсутствует лидер, то ускорение становится равным нулю.

Очень удобным аппаратом для реализации микроскопических моделей оказались клеточные автоматы [9]. Предложил такую модель Дж. Фон Нейман в начале 1950-х г. [3]. В моделях клеточных автоматов дорога разбивается на клетки, время считается дискретным. Каждая ячейка может находиться в каком-либо состоянии, которое определяется набором правил, зависящих от состояний соседних ячеек. Случайные возмущения вносят элемент стохастичности. Достоинством такого подхода является высокая эффективность при компьютерном моделировании. Недостатком же является относительно низкая точность в микроскопических масштабах, из-за дискретной природы клеточного автомата.

В результате работы микроскопических моделей, как правило, получают следующие данные: длина очереди, время задержки транспортных средств, средняя скорость, максимальная или минимальная скорость, время движения автомобилей. Основным достоинством микроскопических моделей является возможность получения оценок с высокой точностью. Однако высокая степень детализации в микромоделях влечет за собой следующие недостатки: требуется много ресурсов для сбора исходных данных; для получения достоверных результатов нужно большое число прогонов модели; необходима калибровка параметров; высокая чувствительность к ошибкам в исходных данных; сложности в получении аналитических зависимостей [15].

Заключение

Обобщая представленные классификацию и обзор моделей, стоит отметить большое разнообразие методов и моделей, разработанных для решения задач, связанных с проблемами автомобильного движения. Однако до сих пор не существует идеальной модели, позволяющей решить все проблемы, связанные с транспортными потоками, как не существует и всеохватывающей классификации этих моделей, учитывающей все их аспекты. Выбор метода моделирования определяется как поставленной задачей, так и техническими возможностями и предпочтениями исполнителей.