Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

RESULTS OF PRELIMINARY OF THE TECHNICAL AND MEDICAL RESEARCHES OF THE ELECTROCARDIOGRAPHS ON THE BASE OF NANOELEKTRODES

Авдеева Д.К., Демьянов С.В., Максимов И.В., Лежнина И.А., Садовников Ю.Г.
The descriptions of structures ECGs to study the cardiovascular system of man, created on the basis of medical nanoelektrodes. Preliminary technical and medical researches ECGs. Shown by results of studies that developed high-quality electrocardiograms exercise electrocardiography without filters in the input measurement circuit in a band from 0 Hz to 100 Hz, the noise level is ± 1 μV, which is determined by noise measuring equipment, nanoelektrodes hardly make noise component in the resulting noise. Keywords: electrocardiography, medical nanoelektrodes, band-stop filter, filters, frequency band electrocardiogram, the noise level

В [1, 2] нами описан электрокардиограф и наноэлектроды для исследования сердца по Холтеру. Для регистрации электрокардиограммы по методу Холтера в I, II и III отведениях разработаны два одноканальных и один трехканальный электрокардиографы на наноэлектродах.

Блок-схемы электрокардиографов представлены на рис. 1 а, б.

p

p 

Рис. 1. Структурные схемы одноканальных электрокардиографов:

УБП - усилитель биопотенциалов; АЦП - аналого-цифровой преобразователь;
МК - микроконтроллер; ПК - персональный компьютер; а - без УБП; б - с УБП

В электрокардиографах используется сигма-дельта АЦП AD7731, входные токи которого равны (30-40) нА.

Диапазон входного сигнала АЦП задается центральным процессором и может составлять ±20 мВ, ±40 мВ, ±80 мВ, ±160 мВ, ±320 мВ, ±640 мВ и ±1,28 В. В спроектированных электрокардиографах используется диапазон ±20 мВ. АЦП производит выборку сигнала с частотой F = 200/500/1000/2000 Гц, который выводится на экран монитора через USB-порт или записывается на встроенную флеш-память MMC mobile объемом 2 Гб. Электрокардиограф имеет часы реального времени DS1302, позволяющие задать начальное и конечное время регистрации сигнала.

При 16-битном кодировании шаг квантования равен

f

Для управления используется маломощный 8-разрядный AVR-микроконтроллер Atmega128. За счет выполнения большинства инструкций за один машинный цикл Atmega128 достигает производительности 1 млн. операций в секунду/МГц, что позволяет проектировщикам систем оптимизировать соотношение энергопотребления и быстродействия.

Разработанные электрокардиографы позволяют также снимать электрокардиограмму с грудной клетки по Небу и по системе «руки-ноги» (I, II, III отведения).

На рис 2 а, б представлены записи электрокардиограммы с грудной клетки по Небу в покое при токе ≤1 нА. Измерительный канал имеет полосу пропускания от 0 до 100 Гц и не имеет фильтра высоких частот, ограничивающего ЭКГ-сигнал со стороны низких частот и заграждающего сетевого фильтра 50 Гц.

На рис. 2 а представлена запись электрокардиограммы с грудной клетки по Небу с помощью наноэлектродов ЭСМГ-1/н2 (электроды слабополяризующиеся с кнопочным отведением). Наноэлектроды ЭСМГ-1/н2 имеют рабочую поверхность, контактирующую с телом человека, диаметром 10 мм.

На рис. 2 б представлена запись электрокардиограммы с грудной клетки по Небу с помощью наноэлектродов ЭСМГ-1/н1 с диаметром рабочей поверхности 5 мм.

 p

а

 p

б

Рис. 2. Записи электрокардиограммы с грудной клетки по Небу:

а ‒ с помощью наноэлектродов ЭСМГ-1/н2, диаметром 10 мм;

б ‒ с помощью наноэлектродов ЭСМГ-1/н1, диаметром 5 мм

p

Рис. 3. Фрагмент электрокардиограммы с грудной клетки при максимальной чувствительности 1:1, снятой с помощью наноэлектродов ЭСМГ-1/н1

На рис. 3 представлена запись фрагмента электрокардиограммы, рис. 2б, при максимальной чувствительности 1:1.

Параметры электрокардиографов настроены таким образом, чтобы сохранить одинаковую разрешающую способность без усилителя биопотенциалов и при наличии усилителя биопотенциалов, а именно шаг квантования с усилителем и без усилителя биопотенциалов равен:

f

На рис. 4 а,б представлены записи электрокардиограмм при входных токах (30-40) нА без УБП.

p 

а

 p

б

Рис. 4. Записи электрокардиограмм

при входных токах (30-40) нА без усилителя биопотенциалов

p 

а

 p

б

Рис. 5. Записи электрокардиограмм, полученных на 3-хканальном электрокардиографе

Сравнение качества зарегистрированных электрокардиограмм при входных токах электрокардиографов (30-40) нА и ≤1нА подтверждает высокую стабильность электродного потенциала наноэлектродов при длительном воздействии постоянным током и отсутствие ЭДС поляризации.

Каждый канал трехканального электрокардиографа выполнен по схеме одноканального электрокардиографа с биоусилителем.

Технические параметры каждого канала также соответствуют техническим параметрам одноканальных электрокардиографов.

Записи электрокардиограмм, полученных на трехканальном электрокардиографе, представлены на рис. 5 а, б, I, II, III отведения от конечностей.

Проведены исследования амплитудно-частотных характеристик электрокардиографов. При частоте дискретизации 2000 Гц полоса пропускания электрокардиографа равна 0-100 Гц, т.е. сетевая помеха присутствует в полосе пропускания.

Исходя из результатов регистрации электрокардиограммы (рис. 3-5), можно сделать вывод, что сетевая помеха в полосе 0-100 Гц при частоте квантования 2000 Гц не регистрируется, несмотря на то, что в схеме прибора отсутствует заграждающий фильтр.

Спроектированная электрокардиографическая аппаратура позволяет без искажений снять истинную биоэлектрическую активность сердца человека на поверхности тела человека в полосе от 0 до 100Гц при частоте дискретизации 2000 Гц (по Котельникову В.А. ‒ до 1000 Гц).

В результате предварительных технических исследований разработанных электрокардиографов получены следующие технические характеристики:

диапазон входных напряжений ‒ от ± 0,002 мВ до ±20 мВ (по ГОСТ 19687-89 от 0,03 мВ до 5 мВ);

уровень внутренних шумов от пика до пика ‒ от ‒1мкВ до +1мкВ;

диапазон частот ‒ (0-20)/(0-40)/(0-75)/(0-100) Гц;

частота квантования ‒ 200/500/1000/2000 Гц;

число каналов ‒ 1 и 3;

число электродов ‒3 и 7;

запись на флэш с объемом памяти 2 Гб;

часы реального времени;

питание от аккумуляторных батарей.

Предварительные медицинские исследования были проведены в Томском НИИ кардиологии. Всего было исследовано 19 пациентов с различными патологиями сердечно-сосудистой системы и 10 человек ‒ норма.

На основании проведенных медицинских исследований показано, что разработаные на базе наноэлектродов структуры электрокардиографов для исследования сердца по Холтеру имеют:

1) повышенную разрешающую способность;

2) не содержат фильтрующих элементов в измерительной цепи;

3) позволяют регистрировать без искажений фильтрами истинную биоэлектрическую активность сердца на поверхности тела человека в области частот от 0 Гц до 100 Гц:

4) диапазон измерения ‒ от ±2 мкВ до ±20 мВ:

5) уровень шума от ‒1 мкВ до +1 мкВ, значение которого определяется шумами измерительной аппаратуры, наноэлектроды практически не вносят шумовой составляющей в результирующий уровень шума [3].

Данная разработка выполнена по проекту Рособразования № 2.2.3.3/3111 «Разработка средств диагностики и экспресс-методов, основанных на применении медицинских наноэлектродов, для оценки физического и психоэмоционального состояния здоровья обучающихся» аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы (2009-2010 годы)».

Список литературы

  1. Авдеева Д.К., Клубович И.А. Электрокардиограф на наноэлектродах // Успехи современного естествознания. ‒ 2009. ‒ №11. ‒ С. 96-98.
  2. Avdeeva D.K., Klubovich I.A. Results of Experimental Researches of Nanoelectrodes metrological Characteristics for Measurement of Electric Fields of the ground and biopotentials of the person // 10-th European Conference on Non-Destructive Testing: Abstracts ‒ Moscow, 7-11 June 2010. ‒ Moskow: SPEKTR, 2010. ‒ Т. 2. ‒ С. 306-308 (84140893).
  3. Avdeeva D.K., Vylegzhanin O.N., Grekhov I.S., Kazakov V.Y., Kim V.L., Klubovich I.A., Rybalka S.A., Sadovnikov Y.G., YukhinY.M. Experimental results of electric activity of «electronic-ionic conduction» junction // European journal of natural history. ‒ 2009. ‒ №2, ISSN 2073-4972. ‒ Р. 98.

Рецензенты:

Агафонников Виктор Филиппович, д.т.н., профессор кафедры конструирования узлов и деталей РЭС (КУДР) Томского университета систем управления и радиоэлектроники
(ТУСУР);

Светлаков Анатолий Антонович, д.т.н., профессор кафедры электронных средств автоматизации и управления Томского государственного университета систем управления и радиоэлектроники.