Значительный интерес к соединениям тетрагидротиопиранового ряда продиктован возможностью их практического использования в качестве биологически активных веществ, комплексообразователей, экстрагентов. Новым направлением в области гетероциклических серосодержащих соединений является синтез их фосфорорганических производных [5, 6].
Цель исследования
В данной работе, используя в качестве исходных продуктов бензальдегида и ацетона с помощью кротоновой конденсации получен дибензальацетон. При действии сероводорода на дибензальацетон он замыкается в зависимости от количества ацетата натрия в транс- и цис-изомеры 2,6-дифенилтетрагидротиопиран-4-он (1). Строение цис-кетона (1) установлено на основании данных ИК- и ПМР-спектров, физико-химические константы соответствуют литературным данным [6]. Путем взаимодействия цис-изомера 2,6-дифенилтетрагидротиопиран-4-она (1) с диэтилфосфитом в условиях реакции Абрамова в присутствии свежеприготовленного алкоголята натрия получен цис-2,6-дифенил-4-диэтоксифосфорилтетрагидротиопиран-4-ол (2) с физико-химическими характеристиками, соответствующими литературным данным [6].
Реакция проходит с саморазогреванием реакционной смеси, о конце взаимодействия судили по прекращению выделения тепла после прибавления очередной порции катализатора. Конденсация диалкилфосфита с гетероциклическим кетоном протекает по ионному механизму.
Известны способы получения сложных эфиров реакцией карбонилирования олефинов моноксидом углерода и спиртами в присутствии фосфиновых комплексов переходных металлов [7, 8], реакцией прямой этерификации при конвекционном нагревании [1] и микроволновой активацией [2, 3]. Ранее нами были проведены синтез сложных эфиров на основе оксинитрилов 2,6-дифенилпиперидонов в присутствии метилата натрия [4], реакция протекает без нагрева с высоким выходом целевого продукта.
Материалы и методы исследования
В дальнейшем, с целью изучения реакционной способности α-оксифосфоната (2) и синтеза новых представителей тетрагидропиранового ряда, был осуществлен синтез сложных эфиров (3–5) и оксима (6). Соединения (3–5) были получены взаимодействием исходного α-оксифосфоната (2) с избытком смеси хлорангидридов и ангидридов соответствующих кислот при температуре 70–80 °С в течение 3–10 часов.
Индивидуальность полученных соединений контролировали тонкослойной хроматографией на окиси алюминия. Выход целевых продуктов составляет 78–85 %. Строение их подтверждено данными элементного анализа и ИК-спектроскопии (таблица). В ИК-спектрах (3–5) отчетливо проявляются полосы поглощения карбонильной группы С = О (1748–1744 см-1) сложноэфирного фрагмента Р = О (1234-1176 см-1) и Р-О-С-групп (1047–1023 см-1) соответственно, а при 3226 см-1 отсутствует полоса поглощения ОН-группы.
Физико-химические характеристики соединений (3-5)
№ п/п |
R |
Выход, % |
Т пл. |
Rf |
Элементный анализ найдено,% (вычислено, %) |
Брутто-формула |
|||
C |
H |
S |
P |
|
|||||
1 |
СОСН3 |
88,0 |
масло |
0,90 |
61,9 (61.6) |
6,57 (6,4) |
7,09 (7,11) |
7,03 (6,91) |
С23Н29О5SP |
2 |
СОС2Н5 |
90,0 |
масло |
0,70 |
62,3 (61,8) |
6,7 (6,6) |
6,9 (6,53) |
6,7 (6,1) |
С24Н31О5SP |
3 |
СОС6Н5 |
78,0 |
масло |
0,82 |
65,2 (65,8) |
5,9 (6,0) |
6,1 (6,2) |
5,9 (6,0) |
С28Н31О5SP |
Известно, что окисленные производные сульфидов используются в качестве экстрагентов, комплексообразователей, а также разнообразных физиологически активных веществ. Свободные электронные пары атома серы находятся в сопряжении с ароматическими циклами при углеродных атомах С2 и С6 тетрагидротиопиранового кольца. Поэтому окисление в целом затруднено как на стадии окисления до сульфоксида, так и на стадии превращения в сульфон. Ранее установлено, что эти процессы являются типичными электрофильными окислительными реакциями и строго подчиняются бимолекулярной кинетике [6].
В связи с этим изучено S – окисление цис-2,6-дифенил-4-диэтоксифосфорил-4-ацетокситетрагидротиопиранов (4) перекисью водорода (30 %) в присутствии ледяной уксусной кислоты, в результате было выделено и охарактеризовано сульфоновое производное (7).
Глубокое окисление в этом случае объясняется тем, что при взаимодействии перекиси водорода с ледяной уксусной кислотой образуется надуксусная кислота, являющая сильным окислителем.
Результаты исследования и их обсуждение
ИК-спектры синтезированных соединений записаны на приборе «NIKOLET-5700» с Фурье-преобразованием (США) в таблетках KBr и в тонком слое. Контроль за ходом реакций осуществлен в тонком слое оксида алюминия в системе растворителей (бензол:ацетон 1:1).
Синтез a-окифосфоната (2). Реакцию цис-изомера 2,6-дифенилтетрагидропирана-4-она (1) с диэтилфосфитом проводили в среде бензола при перемешивании эквимолярных количеств реагентов при комнатной температуре в течение 3–4 часов с добавлением каталитического количества насыщенного раствора этилата натрия. При этом с выходом 94 % выделен и охарактеризован α-оксифосфонат (2) .
Общая методика синтеза сложных эфиров (3–5). К раствору 0,003 моля 2,6-дифенил-4-диэтокси-фосфорилтетрагидротиопиран-4-ола (2) в 15 мл бензола и в 0,3 молях соответствующего ангидрида прибавляли 0,03 моля хлорангидрида соответствующей кислоты. Смесь нагревали при температуре 70–80 °С в течение 3–10 часов. Ход реакции контролировали методом ТСХ на окиси алюминия в системе различных растворителей. Физико-химические характеристики соединений (3–5) приведены в таблицах 1 и 2.
Выводы
Таким образом, нами был проведен синтез сложных эфиров цис-2,6-дифенил-4-диэтоксифосфорилтетрагидротиопиран-4-ола и охарактеризованы их физико-химические параметры полученных соединений. Полученные соединения идентифицированы данными элементного анализа и ИК-спектроскопии. Результаты проведенных исследований могут найти применение для поиска новых биологически активных соединений на основе сложных эфиров тиопиранона.
Рецензенты:
Досжанов М.Ж., д.т.н., профессор, декан факультета Естествознания и аграрных технологий Кызылординского государственного университета им. Коркыт Ата Министерства образования и науки Республики Казахстан, г. Кызылорда;
Удербаев С.С., д.т.н., профессор, заведующий кафедрой «Архитектура и строительное производство» Кызылординского государственного университета им. Коркыт Ата Министерства образования и науки Республики Казахстан, г. Кызылорда.
Работа поступила в редакцию 09.09.2014.
Библиографическая ссылка
Ахатаев Н.А., Барамысова Г.Т., Джиембаев Б.Ж. СИНТЕЗ ГИДРОКСИФОСФОНАТОВ ТЕТРАГИДРОТИОПИРАНОВОГО РЯДА И СЛОЖНЫХ ЭФИРОВ НА ИХ ОСНОВЕ // Фундаментальные исследования. – 2014. – № 9-10. – С. 2174-2176;URL: https://fundamental-research.ru/ru/article/view?id=35290 (дата обращения: 23.11.2024).