Разработка систем охлаждения радиоэлектронной аппаратуры с внутренними источниками теплоты в тяжелых условиях красильно-отделочного производства – это актуальная и сложная задача. Электронное оборудование управляющих процессоров агрегатов в красильно-отделочном производстве работает в условиях повышенной влажности, запыленности и повышенной температуры. Стандартные методы охлаждения могут не справляться с такой задачей. Пыль очень быстро выводит кулеры из строя. Именно для таких тепловых условий нужна эффективная пассивная система охлаждения.
Цель исследования
Разработка надежных и эффективных пассивных систем охлаждения управляющих процессоров для оборудования красильно-отделочного производства.
Материал и методы исследования
В качестве объекта исследования была выбрана материнская плата 8IE533 фирмы Gigabyte, которая используется в тканепечатных машинах Шторм, Уника итальянского производства, установленных на ОАО «Самтекс».
Теоретические исследования были проведены с использованием аналитических методов математического моделирования на основе метода Фурье.
Результаты исследования и их обсуждение
Нами разработано два типа пассивных систем охлаждения. Это радиатор из меди штыревого типа и радиатор из алюминия с включением наночастиц из углерода.
В качестве объекта исследования была выбрана материнская плата 8IE533 фирмы Gigabyte, которая используется в тканепечатных машинах «Шторм», «Уника» итальянского производства, установленных на ОАО «Самтекс» (рис. 1). Данная материнская плата имеет форм-фактор ATX (форм-фактор подавляющего большинства современных (2005 – 2011 гг.) персональных настольных компьютеров). Фотография данной материнской платы приведена на рис. 1.
Рис.1. Материнская плата
Для пассивного охлаждения широкое применение получили радиаторы, которые различаются по виду развитой площади поверхности, а именно ребристые, штыревые и игольчато-штыревые. В качестве материала для модели была выбрана медь, ранее использовался алюминий. Медь имеет более высокий коэффициент теплопроводности [3], но значительно тяжелее алюминия.
Нами был проведено моделирование теплового режима системы охлаждения процессора данной материнской платы с различными формами радиатора из меди. Определена наиболее оптимальная форма с точки зрения теплоотводящих свойств в условиях свободной конвекции. Было проведено сравнение трех видов радиаторов.
В результате чего наиболее эффективным оказался ребристый радиатор. Он на 12 % охлаждает лучше, чем другие модели. Далее была разработана наиболее оптимальная форма теплоотводящей поверхности, была подобран на оптимальная ширина пластин и расстояние между ними. Для большего увеличения площади поверхности теплообменника добавили на пластины дополнительные ребра. На рис 3. приведен разработанный нами радиатор. В итоге по сравнению с рассмотренными конструкциями эффективность охлаждения увеличилась на 8 %.
Рис. 2. Ребристый радиатор с дополнительными ребрами
Для улучшения теплоотводящих свойств [5] был произведен расчет температурного поля алюминиевого радиатора, с включением в его структуру наночастиц из углерода. Для решения поставленной задачи было применено аналитическое решение, предложенное А.В. Лыковым [4] методом преобразования Фурье. Задача состояла в том, чтобы адаптировать данное решение, с граничными условиями четвертого рода, для расчета наноструктур в форме шара в бесконечном пространстве. С этой целью был разработан в пакете прикладных программ Matlab программный алгоритм. Язык Matlab является высокоуровневым интерпретируемым языком программирования, включающим основанные на матрицах структуры данных, широкий спектр функций, интегрированную среду разработки, объектно-ориентированные возможности и интерфейсы к программам, написанным на других языках программирования.
Задача формулируется следующим образом. Сферическое тело помещается в неограниченную среду, где происходит охлаждение путем теплопроводности. Температура сферического тела выше температуры среды. Для полученного А.В. Лыковом решения, был разработан алгоритм. Программа позволяет рассчитать распределение температурного поля внутри сферы и на ее поверхности. Также мы можем проследить за изменениями в любой момент времени. При расчетах мы задаем, что материалом сферического тела с диаметром 10-9 метра является углерод, а среды которая его окружает, алюминий.
Для представления, что происходит внутри материала с нановключениями, рассчитаем тепловое поле отдельно взятой частицы углерода. Необходимо найти распределение температуры в любой момент времени.
Безразмерное значение температуры θ в интересующей нас точке сферической частицы можно определить следующими выражениями
(1)
(2)
где
;
где θ1 – безразмерная температура шара, θ2 – безразмерная температура алюминия, R – радиус шара, м; r – текущий радиус шара; t – время
Результаты расчета приведены на рис. 2, 3, на которых показано, как изменяется θ1 и θ2 с течением времени. Из графика видно, что температура среды снижается. На рис. 4 показано изменение температуры внутри сферы и за ее пределами.
Рис. 3. Графики безразмерной температуры наночастицы из углерода и окружающей среды, изменение безразмерных температур θ1 и θ2 во времени
Рис. 4. График изменения отношения температур θ1 к θ2
Рис. 5. Изменение безразмерной температуры θ1 в разных точках сферы
Температурное поле [1] приведено в логарифмических координатах. На основе результатов расчетов показывается в графической форме изменение температуры наночастицы в зависимости от времени охлаждения. С помощью языка программирования Matlab мы смогли привести аналитическое решение задачи с граничными условиями четвертого рода. Это позволило наиболее точно и быстро производить необходимые расчеты. А построение графика позволяет визуально рассмотреть решение. Данное решение может служить аналогом натурного эксперимента для проверки адекватности численных моделей процесса теплопроводности РЭА при анализе его теплового режима.
Техническая новизна полученных результатов формы радиатора подтверждена патентом РФ на полезную модель «Устройство жидкостного охлаждения управляющих процессоров текстильного оборудования» № 121915 [2].
Температурное поле [1] приведено в логарифмических координатах. На основе результатов расчетов показывается в графической форме изменение температуры наночастицы в зависимости от времени охлаждения. С помощью языка программирования Matlab мы смогли привести аналитическое решение задачи с граничными условиями четвертого рода. Это позволило наиболее точно и быстро производить необходимые расчеты. А построение графика позволяет визуально рассмотреть решение. Данное решение может служить аналогом натурного эксперимента для проверки адекватности численных моделей процесса теплопроводности РЭА при анализе его теплового режима.
Техническая новизна полученных результатов формы радиатора подтверждена патентом РФ на полезную модель «Устройство жидкостного охлаждения управляющих процессоров текстильного оборудования» № 121915 [2].
Выводы
В результате проведенных исследований нами разработаны две пассивных конструкции радиаторов: пассивного из меди, пассивного из дюралюминия с включение наночастиц из углерода. Проведены необходимые расчеты температурных полей и сравнительный анализ эффективности радиаторов. А также разработан программный продукт для расчета температурного поля теплопроводящей поверхности радиатора с наноструктурами из углерода на основе аналитического решения средствами языка программирования сверхвысокого уровня Matlab.
Рецензенты:
Калинин Е.Н., д.т.н., профессор кафедры системного анализа, ФГБОУ ВПО «Ивановский государственный политехнический университет», г. Иваново;
Годлевский В.А., д.т.н, профессор кафедры экспериментальной и технической физики, ФГБОУ ВПО «Ивановский государственный университет», г. Иваново.
Работа поступила в редакцию 24.06.2014.
Библиографическая ссылка
Зуев А.С., Корочкина Е.Е. РАЗРАБОТКА ПАССИВНЫХ СИСТЕМ ОХЛАЖДЕНИЯ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ С ВНУТРЕННИМИ ИСТОЧНИКАМИ ТЕПЛОТЫ В СОСТАВЕ ТЕКСТИЛЬНОГО ОТДЕЛОЧНОГО ОБОРУДОВАНИЯ // Фундаментальные исследования. – 2014. – № 9-3. – С. 516-520;URL: https://fundamental-research.ru/ru/article/view?id=34878 (дата обращения: 09.11.2024).