Объемная доля коркового и мозгового вещества тимуса является надежным индикатором его функционального состояния. В настоящее время накоплено достаточно фактов, свидетельствующих о зависимости корково-мозгового соотношения от возраста [8, 9]. Представлены неоспоримые доказательства трансформации обсуждаемого параметра при влиянии на организм различного рода стрессовых воздействий: чрезмерная физическая нагрузка и гиподинамия, заболевания и травмы, экологические факторы физической и химической природы [1, 2]. В основе таких изменений лежат сложные процессы, связанные с пролиферацией, созреванием и дифференцировкой лимфоцитов [6, 7]. Вместе с этим очевиден дефицит работ, в рамках которых морфология тимуса изучается в сравнительном плане у широкого спектра позвоночных животных естественной среды обитания в сравнении с человеком, что может приводить к ошибочному мнению о сходстве ключевых морфологических характеристик тимуса у всех позвоночных.
Цель работы заключалась в сравнительном изучении основных морфологических характеристик тимуса, связанных с состоянием его лимфоидного компонента у наземных позвоночных животных в сравнении с человеком.
Материал и методы исследования
Исследование тимуса проводили на примере 15-ти видов позвоночных, относящихся к четырем классам: класс Земноводные (Amphibia): Rana esculenta (n 36), R. temporaria (n 28), R. terrestris (n 36); класс Пресмыкающиеся (Reptilia): Lacerta agilis (n 36), Vipera berus (n 24), Natrix natrix (n 36); класс Птицы (Aves): Columba livia (n 36), Scolpax rusticola (n 24), Muscicapa striata (n 16); класс Млекопитающие (Mammalia): Sorex araneus (n 36), S. caecutiens (n 24), Clethrionomys glareolus (n 40), Mus musculus (n 24), Sylvimus major (n 24), Homo sapiens (n 65).
Исследование проводили на примере неполовозрелых особей и особей II периода зрелого возраста. Рамки соответствующего возраста человека определялись согласно классификации, принятой на 7-й Всесоюзной конференции по возрастной морфологии, физиологии и биохимии в 1965 году. Возраст животных эквивалентно соответствовал возрасту человека и определялся по общепринятым методикам [4]. Всего изучено 224 препарата неполовозрелых и 250 препаратов половозрелых позвоночных.
Для исследования тимуса человека использовали материал, набранный на базе отделения клинической патологии при Смоленском областном институте патологии. Весь секционный материал тщательно отбирали по анамнезу с целью исключения причин смерти, которые могли бы повлиять или резко изменить структуру тимуса. Эвтаназию животных осуществляли передозировкой эфирным наркозом (ЗАО «Вектон») в соответствии с требованиями Министерства здравоохранения Российской Федерации к работе экспериментально-биологических клиник, а также «Европейской конвенции по защите позвоночных животных, используемых для экспериментов или в научных целях» (г. Страсбург, 1986). Тимус, изъятый сразу после эвтаназии, взвешивали и измеряли. Доли тимуса фиксировали 10 % нейтральным формалином, обезвоживали и заливали в парафин по стандартной методике. Срезы тимуса толщиной 5 мкм окрашивали гематоксилин-эозином, пикрофуксином по Ван-Гизону, альдегид-фуксином и смесью Halmi по Габу-Дыбану. Микрофотографии получали с использованием цифрового аппарата Nicon CoolPix 7900 (Nicon, Япония). Полученные изображения экспортировали в компьютер и проводили измерение абсолютных площадей коркового и мозгового вещества тимуса с помощью программы ImageJ 1.38 (National Institutes of Health, Bethesda, США, свободный доступ в интернете). Для суждения о морфофункциональном состоянии тимуса определяли корково-мозговой индекс (КМИ), который рассчитывали как отношение коркового вещества к мозговому. Измерение площади коркового и мозгового вещества тимуса проводили при увеличении окуляра х8, объектива х4 (МБС-9), а также окуляра х7 и объектива х8 (МБР-3). При изучении цитоконструкции тимуса подсчет общего количества тимоцитов в корковом и мозговом веществе тимуса проводили на условной единице площади в 100 мкм2 (ок. ×15, об. ×60 под масляной иммерсией) на цифровых фотографиях. Для каждого препарата оценивали 10 полей зрения. Количества митозов в субкапсулярной зоне коры и мозговом веществе (митотический индекс ‒ МИ) определяли на 1000 зарегистрированных клеток (ок.×15, об. ×90 под масляной иммерсией). Значимость различий между сравниваемыми группами оценивали методами параметрической и непараметрической статистики (t-критерий Стьюдента, U-критерий Манна-Уитни). Анализ распределения признаков на нормальность проводили с использованием критериев Лиллиефорса и Шапиро-Уилка, а условие равенства дисперсий выборок проверяли по критерию Левена.
Результаты исследования и их обсуждение
На примере неполовозрелых позвоночных прослеживается зависимость морфологии тимуса от уровня организации. Выявлено, что холоднокровные животные закономерно уступают более развитым классам позвоночных по величинам всех изученных морфологических показателей. У земноводных и пресмыкающихся существенно снижено содержание тимоцитов в корковом и мозговом веществе тимуса, что особенно заметно при сравнении земноводных с другими позвоночными. Особенно сильно по показателям КМИ и МИ холоднокровные позвоночные уступают насекомоядным млекопитающим. С момента возникновения истинной наземности (пресмыкающиеся) у неполовозрелых позвоночных КМИ изменяются мало (рисунок), вместе с этим происходит увеличение (практически двукратное) плотности локализации тимоцитов, как в корковом, так и в мозговом веществе тимуса (таблица). Пресмыкающиеся по сравнению с земноводными характеризуются увеличением количества митозов в коре и снижением их числа в мозговом веществе. Возникновение теплокровности неоднозначно сказывается на состоянии изучаемых морфологических параметров тимуса.
Отчетливо прослеживается сходство КМИ и количества тимоцитов коры и мозгового вещества у птиц и грызунов. Вместе с этим для человека в сравнении с другими млекопитающими характерны самые низкие показатели КМИ тимуса. По этим характеристикам человек проявляет сходство с холоднокровными позвоночными. Только по количеству тимоцитов на единицу площади и их МИ показатели тимуса человека выходят на уровень, характерный для теплокровных животных (рисунок, таблица). В свою очередь землеройки-бурозубки отличаются стабильно повышенными значениями всех изученных морфологических параметров тимуса, что особенно сильно проявляется на примере КМИ (рисунок). По количеству тимоцитов землеройки уже мало отличаются от грызунов, человека и птиц. Величина митотического индекса насекомоядных млекопитающих и грызунов сходна (таблица).
У всех позвоночных независимо от уровня организации с возрастом наблюдается снижение показателей исследуемых морфологических параметров тимуса. У земноводных и всех млекопитающих при переходе к зрелому возрасту наблюдается двукратное снижение КМИ. При этом у пресмыкающихся такое снижение незначительно, тогда как у птиц оно оказывается максимальным (в 6 и более раз). Согласно полученным результатам у всех амниот с возрастом происходит одинаково сильное (двукратное) снижение МИ тимоцитов коры. При этом у половозрелых птиц МИ коры ниже соответствующего показателя неполовозрелых представителей в 3,5 раза, тогда как у человека такое снижение оказывается пятикратным. В мозговом веществе тимуса холоднокровных позвоночных с возрастом темпы пролиферации лимфоцитов изменяются мало (недостоверные различия). Данный показатель птиц хотя и незначительно (в 1,3 раза), но достоверно уменьшается, тогда как у млекопитающих (грызуны и землеройки-бурозубки) его значения снижены уже вдвое. Для человека характерно самое существенное снижение темпов пролиферации лимфоцитов в мозговом веществе тимуса (рисунок, таблица).
Корково-мозговой индекс тимуса позвоночных
Морфометрические показатели коркового и мозгового вещества тимуса позвоночных животных и человека (x ± Sx)
Группа |
Количество тимоцитов коры (S = 100 мкм2) |
Количество тимоцитов в мозговом веществе (S = 100 мкм2) |
МИ, % на 1000 тимоцитов Кора |
МИ, % на 1000 тимоцитов Мозговое вещество |
Количество тимоцитов коры (S = 100 мкм2) |
Количество тимоцитов в мозговом веществе (S = 100 мкм2) |
МИ, % на 1000 тимоцитов, Кора |
МИ, % на 1000 тимоцитов, Мозговое вещество |
неполовозрелые |
половозрелые |
|||||||
Amphibia |
308,12 ± 29,9 *, c,d,e,f |
139,54 ± 21,6 b,c,d,e,f |
1,74 ± 0,34 c,d,e,f |
1,83 ± 0,32 d,e,f |
260,79 ± 23,7 *, b,c,d,e,f |
143,27 ± 16,4 b,c,d,e,f |
0,81 ± 0,21 *, d,e |
1,59 ± 0,31 b,f |
Reptilia |
466,69 ± 34,8 c,d,e,f |
267,35 ± 27,6 a,c,d,e,f |
2,19 ± 0,29 *,c,d,e,f |
1,45 ± 0,31 c,d,e,f |
481,18 ± 41,9 a,c,d |
273,80 ± 37,6 ,a,c,d,f |
0,92 ± 0,15 *, d,e,f |
1,19 ± 0,25 a,f |
Aves |
652,88 ± 48,24 a,b,d |
338,91 ± 38,27 *, a,b,f |
2,79 ± 0,42 *, a,b,d,e |
1,86 ± 0,22 *, b,d,e,f |
654,26 ± 56,7 a,b,e,f |
418,61 ± 49,6 *,a,b,e |
0,79 ± 0,11 *, d,e |
1,38 ± 0,17 *, a,f |
Insectivora |
759,89 ± 61,6 *, a,b,c,e |
356,29 ± 35,4 *, a,b,f |
3,88 ± 0,53 *, a,b,c,f |
3,11 ± 0,49 * ,a,b,c,f |
611,37 ± 59,0 *, a,b,e |
467,01 ± 52,9 *,a,b,e,f |
1,55 ± 0,33 *, a,b,c,f |
1,49 ± 0,31 *,b,f |
Rodentia |
644,74 ± 54,5 *, a,b,d |
318,33 ± 29,3 *, a,b,f |
3,67 ± 0,45 *, a,b,c,f |
3,03 ± 0,41 *, a,b,c,f |
513,00 ± 27,9 *, a,c,d |
266,40 ± 23,2 *,a,c,d,f |
1,51 ± 0,24 *, a,b,c,f |
1,39 ± 0,34 *, a,f |
H. sapiens |
679,95 ± 46,9 *, a,b |
403,61 ± 18,9 *, a,b,c,d,e |
2,69 ± 0,36 *, a,b,d,e |
2,55 ± 0,41 *, a,b,c,d,e |
553,49 ± 54,6 *, a,c |
346,48 ± 38,3 *, a,b,d,e |
0,67 ± 0,12 *, b,d,e |
0,73 ± 0,15 *, a,b,c,d,e |
Примечания: * – достоверность возрастных отличий (p ≤ 0,05), достоверность отличий (p ≤ 0,05) по сравнению: a – с земноводными, b – с рептилиями, c – с птицами, d – с насекомоядными млекопитающими, e – с грызунами, f – с человеком.
Проведено сопоставление МИ тимоцитов коры и мозгового вещества тимуса позвоночных животных разного возраста. У всех неполовозрелых позвоночных, за исключением земноводных и человека, МИ тимоцитов коры превышает аналогичный показатель мозгового вещества тимуса: в 1,3 раза (грызуны и землеройки-бурозубки) и в 1,5 раза (птицы, пресмыкающиеся). На стадии второй зрелости у человека и млекопитающих животных отличий МИ в коре по сравнению с мозговым веществом тимуса не наблюдается, тогда как у пресмыкающихся и птиц МИ тимоцитов мозгового вещества незначительно преобладает над соответствующим показателем коры. Только у половозрелых земноводных МИ индекс мозгового вещества практически вдвое выше аналогичного показателя тимоцитов коры тимуса. Плотность расположения тимоцитов в корковом веществе тимуса с возрастом снижается только у млекопитающих, включая человека. У земноводных, пресмыкающихся и птиц возрастных изменений этого показателя не зафиксировано (рисунок, таблица). Вместе с этим при переходе от неполовозрелой стадии жизненного цикла к зрелому возрасту степень инфильтрации тимоцитами мозгового вещества тимуса либо не изменяется (земноводные, пресмыкающиеся, грызуны, человек), либо незначительно возрастает (птицы и землеройки-бурозубки).
Морфометрическое изучение клеток лимфоидного ряда в тимусе показало существование возрастных отличий у изученных групп позвоночных животных. По этому признаку всех изученных представителей сравнительно-морфологического ряда можно разбить на 2 группы. В одну группу входят млекопитающие, включая человека, в другую – холоднокровные позвоночные и птицы. У представителей первой группы с возрастом снижается плотность расположения тимоцитов в коре тимуса и существенно падает МИ индекс как мозгового вещества, так и коры. У человека такое снижение оказывается более выраженным, чем у млекопитающих-животных. У представителей второй группы с возрастом не изменяется плотность расположения тимоцитов как в коре, так и в мозговом веществе. Показатели МИ существенно снижаются только в коре. Снижение интенсивности деления лимфоцитов в мозговом веществе у холоднокровных позвоночных оказывается незначительным (таблица).
Обсуждение полученных результатов. Изученные в данной работе морфологические параметры тимуса зависят от темпов поступления предшественников тимоцитов в кору тимуса, их созревания, селекции, а также выхода зрелых Т-лимфоцитов в кровеносное русло [7, 8]. Повышение уровня энергообмена (переход к теплокровности) оказывает существенное влияние на скорость данных процессов, что определяется гормональными воздействиями гипоталамо-гипофизарной системы [7]. Наглядной иллюстрацией такой зависимости является морфология тимуса землероек-бурозубок, энергетический обмен которых отличается максимальной емкостью, в силу особого образа жизни [3]. Следует ожидать, что у людей тяжелого физического труда, а также спортсменов должно наблюдаться более активное поступление предшественников лимфоцитов в тимус и, как следствие, возрастание КМИ и МИ. Последнее подтверждается результатами работ, исследующих последствия воздействия умеренной физической нагрузки на организм [5]. Противоположная ситуация характерна для холоднокровных позвоночных, у которых на фоне пассивности и замедленного обмена веществ показатели, связанные с лимфоцитарным компонентом тимуса, закономерно снижены. Следует учитывать, что аналогичная ситуация возникает в тимусе и теплокровных позвоночных в рамках экспериментов по влиянию гиподинамии [9]. Неслучайно сопоставление человека и других позвоночных свидетельствует о большем сходстве характеристик тимуса человека с холоднокровными позвоночными (КМИ, МИ у половозрелых). Причиной тому, вероятно, является выраженная гиподинамия большинства людей в условиях современной жизни. Тимоциты мозгового вещества прошли позитивную селекцию и составляют всего около 5 % от всех поступивших в тимус предшественников [6, 7]. Полученные данные позволяют утверждать, что на неполовозрелой стадии жизненного цикла количество аутотолерантных клеток (относительно числа недифференцированных тимоцитов коры) у всех позвоночных сходно. На стадии второй зрелости только у теплокровных представителей возрастает количество тимоцитов, проходящих позитивную селекцию в коре. Как результат отсутствие снижения плотности расположения тимоцитов в мозговом веществе на фоне уменьшения данного показателя в коре (грызуны, человек). Более того, у теплокровных, отличающихся наиболее энергозатратным образом жизни (птицы и землеройки-бурозубки), гибель тимоцитов в коре оказывается наиболее низкой. Очевидно, выработка адаптаций к гиперактивному образу жизни и повышенным энерготратам, вынуждает все звенья лимфоидной системы более экономно расходовать клеточный материал, повышая его функциональное качество. Кроме этого, созревающие лимфоциты данных групп животных могут отличаться степенью экспрессии определенных мембранных белков-рецепторов, что позволяет повысить устойчивость к действию глюкокортикоидов во время стрессового воздействия, а также дает возможность формировать популяцию клеток с достаточно высокой степенью аутотолерантности. Возможность таких клеточных перестроек доказана [7]. Следует предположить, что укрепление иммунитета человека в условиях умеренной физической нагрузки в основе своей может иметь в том числе и эти механизмы.
Исследованные группы животных являются обитателями экологически чистых биотопов, в отличие от человека, организм которого испытывает воздействие широкого спектра агрессивных факторов антропогенной среды. Результатом таких отличий является более выраженное возрастное снижение скорости созревания тимоцитов человека в сравнении с млекопитающими (соответственно в 3,5 и 2 раза). Возрастная инволюция тимуса заключается не только в снижении объемов поступающих в тимус предшественников Т-лимфоцитов, но и вызывает замедление их созревания [9]. На примере позвоночных животных выявлено, что в разных зонах тимуса темпы созревания лимфоцитов снижаются неравномерно. Данные свидетельствуют о выраженном снижении пролиферативной активности клеток коры, что может быть связано со свойствами самих предшественников, не прошедших позитивную селекцию, а также определяется утратой функционального потенциала клеток ретикулярного эпителия, активно влияющих на пролиферацию и дифференцировку лимфоцитов [8, 9]. Практически полное сохранение показателей МИ в мозговом веществе тимуса земноводных, пресмыкающихся и птиц может указывать на отличительные особенности зрелых аутотолерантных тимоцитов у этих групп позвоночных, либо является свидетельством сохранения потенциала эпителия мозгового вещества тимуса. Однако у млекопитающих, включая человека, темпы пролиферации одинаково сильно снижаются как в коре, так и в мозговом веществе.
Таким образом, корково-мозговое соотношение в тимусе позвоночных в значительной степени зависит от процессов, связанных с пролиферацией, созреванием и рециркуляцией лимфоцитов, что справедливо для всех представителей сравнительно-морфологического ряда. Тимус представляет собой звено сложной системы, на состояние которой существенный отпечаток накладывает уровень организации и специфические особенности среды обитания. Обнаруженные отличия морфологии тимуса позвоночных животных и человека являются свидетельством пластичности лимфоидной системы в целом и тимуса в частности, что обеспечивает поддержание иммунных функций.
Рецензенты:
Карамышева Е.И., д.м.н., профессор кафедры фармакологии, ГБОУ ВПО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова», г. Москва;
Колесников Л.Л., д.м.н., профессор, зав. кафедрой нормальной анатомии, ГБОУ ВПО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова», г. Москва.
Работа поступила в редакцию 03.03.2014.
Библиографическая ссылка
Юрчинский В.Я., Ерофеева Л.М. МЕХАНИЗМ ФОРМИРОВАНИЯ КОРКОВО-МОЗГОВОГО СООТНОШЕНИЯ В ТИМУСЕ ПОЗВОНОЧНЫХ ЖИВОТНЫХ И ЧЕЛОВЕКА // Фундаментальные исследования. – 2014. – № 5-2. – С. 290-294;URL: https://fundamental-research.ru/ru/article/view?id=33866 (дата обращения: 23.11.2024).