В практике технико-экономического обоснования (ТЭО) целесообразности ремонта и реконструкции длительно эксплуатируемых резервуаров специалисты все чаще сталкиваются с проблемами несовершенства нормативно-технической документации (НТД). Учитывая сложившуюся в отрасли ситуацию, когда доля таких резервуаров достигает 90 %, проблема приобретает масштабный характер. На протяжении многих лет существующая система планово-предупредительных ремонтов РВС позволяла сохранять их работоспособность и техническое состояние металлоконструкций, несмотря на значительные материальные затраты. Во многих случаях состояние длительно эксплуатируемых резервуаров мало отлично от новых РВС, однако недавно вступившие в силу актуализированные нормативные документы говорят о необходимости вывода таких объектов из эксплуатации и обусловливают их снос. В такой ситуации возникает вопрос о правомерности требований НТД, поскольку речь идет не только о затратах на строительство новых резервуаров, но и обоснованности капиталовложений в ремонт и реконструкцию эксплуатируемых объектов, размер которых в масштабах страны сравним с бюджетом любого крупного города. Проблема исходит из различий в требованиях НТД на этапах проектирования резервуара и капитального ремонта после длительной эксплуатации. Так, многие резервуары в нашей стране изначально проектировались под действовавшие тогда сочетания нагрузок, которые в настоящее время претерпели значительные изменения из-за внесения поправок в нормативные документы. Для наглядности динамики развития нормативной базы России приведем общий случай сочетания эксплуатационных нагрузок на корпус РВС (рисунок).
Анализируя приложенные на схеме рисунка нагрузки, наибольший интерес вызывают величины PС и P∑, отражающие соответственно гидростатическую нагрузку и суммарную вертикальную составляющую нагрузки от веса металлоконструкций, расположенных выше расчетной точки. В последней составляющей, кроме веса конструкций, учитывается воздействие ветровой и снеговой нагрузок, нормативные значения которых претерпели значительные изменения.
Общий случай сочетания эксплуатационных нагрузок на корпус РВС (на примере узла сопряжения стенки и днища)
Существующая нормативно-техническая база не предусматривает разделения требований при проектировании и обосновании ремонта РВС, в результате чего изменившиеся нормативы применяются и к эксплуатируемым объектам, несмотря на то, что эти резервуары проектировались по другим нормам и по определению не могут соответствовать современным требованиям НТД, а значит, вопреки положительному опыту их эксплуатации, подлежат сносу.
Классический нормативный расчет РВС как при проектировании, так и при ремонте состоит из двух основных частей: расчет на прочность и расчет на устойчивость. Вопросам прочности длительно эксплуатируемых резервуаров в последнее время уделяется существенное внимание, при этом устойчивость резервуаров практически не изучается, хотя оба эти расчета равнозначны с точки зрения безаварийности эксплуатации объекта. Известно, что расчет на устойчивость резервуара в значительной степени зависит от снеговой нагрузки на РВС. Для наиболее распространенных в России резервуаров РВС-20000 доля снеговой нагрузки в P∑ превышает 85 % в зависимости от региона (рисунок). Совершенно очевидно, что при такой доле снеговой нагрузки изменение ее нормативных показателей играет существенную роль в расчете на устойчивость.
В качестве примера приведем СП 20.13330.2011 Нагрузки и воздействия. Не секрет, что основой для этого документа стал одноименный СНиП 2.01.07-85 Нагрузки и воздействия. В современной редакции в документ внесено значительное количество изменений, затронувших характерные для резервуаров нагрузки и воздействия. Большой резонанс среди экспертов вызвало Приложение Ж, в котором приводятся изменившиеся карты районирования территории России по климатическим характеристикам. В частности, изменились показатели ветрового давления, одновременно с этим ужесточились нормативные показатели снеговых нагрузок.
Рассмотрим применение новых нормативов на примере расчета устойчивости эксплуатируемого резервуара.
Местонахождение резервуара – г. Нижневартовск, Ханты-Мансийский автономный округ – Югра.
Тип резервуара – РВС
Объем резервуара – 20000 м3
Класс опасности – 1
Номер типового проекта – 704-1-60
Нормативная ветровая и снеговая нагрузка на площадке резервуарного парка – 0,3/2,24 кПа (по паспорту резервуара).
Интенсивность сейсмического воздействия в баллах – 5.
Максимально допустимое по проекту давление (вакуум) в газовом пространстве резервуара, кПа – 0,25
Высота стенки резервуара – 11945 мм
Диаметр резервуара – 45600 мм
Режим работы, циклов в год – 16
Сталь – 09Г2С-6.
В настоящее время расчет стенки резервуара на устойчивость выполняется согласно методике, представленной в п. 9.2.3 [4], устойчивость стенки обеспечивается при выполнении следующего условия (1):
(1)
где
Меридиональные напряжения в стенке σ1 для резервуаров со стационарной крышей определяются по формуле (2)
(2)
где Gm – вес металлоконструкций выше расчетной точки; G0 – вес стационарного оборудования выше расчетной точки; Gt – вес теплоизоляции выше расчетной точки; fs – коэффициент, учитывающий форму крыши; S – нормативная снеговая нагрузка на поверхности земли; pv – нормативное значение вакуума.
Кольцевые напряжения при этом в расчете устойчивости определяются по формуле (3):
(3)
где k – коэффициент, учитывающий изменение ветрового давления по высоте стенки; pw – нормативное значение ветрового давления.
Сравнивая формулы (1)–(3), представленные в действующих НТД, с аналогичными условиями [6], авторы [5] отмечают существенное увеличение значений меридиональных и кольцевых напряжений, что в конечном итоге, приводит к необходимости увеличения толщины стенки вновь проектируемых резервуаров на 7 %. Существующие резервуары также подпадают под указанные требования и не проходят проверку условия устойчивости.
Рассмотрим предметно, чем вызвано такое увеличение, обращаясь к главе 10 [1], где нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия следует определять по формуле (4)
, (4)
где сe – коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов, принимаемый в соответствии с 10.5-10.9 [1], сe = 0,85; сt – термический коэффициент, принимаемый в соответствии с 10.10 [1], сt = 1; μ – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с 10.4 [1], μ = 1; Sg – вес снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемый в соответствии с 10.2 [1], Sg = 3,2 кПа.
Принимая выбранные значения величин, получаем нормативное значение снеговой нагрузки по [1]:
Определим нормативное значение снеговой нагрузки на горизонтальную поверхность согласно методике [2], действовавшей до 2011 г.:
(5)
Учитывая геометрию РВС-20000, разница в расчетной нормативной снеговой нагрузке составляет более 35 тс, что определяет фактическое увеличение меридиональных напряжений более чем на 30 % и обусловливает невыполнение условий устойчивости [3,4]. Обобщая вышесказанное, в табл. 1 сведены результаты расчетов и их динамика во времени, обусловленная принятием новых НТД.
Сводные значения исследуемых величин нагрузок и напряжений
№ п/п |
Величина |
Обозначение |
Значение до 2011 г. |
Значение после 2011 г. |
Изменение,% |
1 |
Вес снегового покрова на 1 м2 горизонтальной поверхности земли, кПа |
Sg |
2,24 |
3,2 |
42,8 |
2 |
Нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия, кПа |
S |
1,681 |
1,904 |
13,3 |
3 |
Меридиональное напряжение на уровне II пояса стенки, МПа |
s1 |
3,58 |
4,72 |
31,8 |
4 |
Кольцевое напряжение на уровне II пояса стенки, МПа |
s2 |
0,7 |
0,7 |
0,0 |
5 |
Критическое меридиональное напряжение на уровне II пояса стенки, МПа |
scr1 |
5,74 |
– |
|
6 |
Критическое кольцевое напряжение на уровне II пояса стенки, МПа |
scr2 |
1,84 |
– |
|
7 |
Общая устойчивость |
|
0,99 |
– |
- |
8 |
Условие устойчивости |
– |
Выполнено |
Не выполнено |
Далее обратимся к п. 10.11 [1]:
«Для районов со средней температурой января минус 5 °С и ниже (по карте 5 приложения Ж) пониженное нормативное значение снеговой нагрузки (см. 4.1) определяется умножением ее нормативного значения на коэффициент 0,7». Обращаясь к формуле 4, можно сделать вывод, что коэффициент 0,7 должен применяться дважды, однако в [2] его применение ограничено п. 5.7, и он изначально отсутствует в формуле (5), что, очевидно, и является корректной редакцией.
Аналогичные «поправки» присутствуют во всем документе [1], например, в примечании к п. 10.10 допущена неточность формулировки: не ясно, почему при повышении теплоизоляционных свойств покрытия кровли резервуара следует принимать понижающий термический коэффициент, определяющий степень таяния снега на кровле сооружений с повышенными тепловыделениями, коими являются многие резервуары. Очевидно, в данном случае такой коэффициент должен применяться к кровлям сооружений с повышенным тепловыделением, но без теплоизоляционного покрытия крыши, а теплоизоляция кровли РВС, наоборот, будет повышать термический коэффициент сt > 1.
Отметим, что случаев потери устойчивости эксплуатируемых резервуаров крайне мало, все они, как правило, объясняются какими-либо внешними «форс-мажорными» воздействиями и не связаны с ненормативными нагрузками. Более того, снос резервуара обосновывается во время технико-экономического обоснования ремонта или реконструкции, которое выполняется с частотой 5–8 лет, одновременно с этим в одном резервуарном парке точно такие резервуары, не соответствующие требованиям современных НТД, будут эксплуатироваться в условиях ненормативных нагрузок до планового ТЭО и ремонта, что само по себе абсурдно.
Стоит отметить, что в настоящее время существует решение по установке колец жесткости на стенке резервуара, повышающих цилиндрическую жесткость корпуса и общую устойчивость сооружения. Данное решение имеет ряд недостатков и, на наш взгляд, является не применимым, так как ветровые кольца, монтируемые с внешней стороны стенки, обусловливают наличие дополнительной снеговой и ветровой нагрузки на корпус РВС, а приваренные к стенке подкладные монтажные пластины приводят к коррозионным повреждениям металлоконструкций. Кроме того, изменяется геометрическая форма резервуара, которая и без того не может быть идеально цилиндрической, что приводит к возникновению дополнительных напряжений в стенке за счет эффекта бандажа при сливо-наливных операциях. Нами также рассмотрена возможность разгружения кровли резервуара при помощи центральной стойки, однако такое решение требует обоснования совместности работы фундамента стойки (если он имеется) и корпуса резервуара, что в реальных условиях эксплуатации фактически невыполнимо.
Указанные недостатки [1] уже сейчас обусловливают случаи необоснованного на наш взгляд, сноса резервуаров, все попытки доказать неправомерность нормативных расчетов пресекаются при государственной экспертизе проектов, которая безоговорочно ссылается на [1]. Проектные организации вынуждены страховать свою ответственность по высоким тарифным ставкам, так как страховые компании досконально анализируют возможные риски и привлекают к этому зарубежные экспертные организации. Заказчик же, понимая необоснованность сноса объекта, принимает сторону проектной организации и часто вынуждает «играть» на указанных выше несовершенствах НТД, ведь только так появляется возможность обоснования капитальных затрат. По мнению авторов, назрела необходимость в редактировании имеющейся отечественной нормативно-технической базы по рассматриваемому вопросу, а также гармонизация ее с зарубежными стандартами.
Рецензенты:Обухов А.Г., д.ф-м.н., профессор кафедры «Высшая математика», ФГБОУ ВПО «Тюменский государственный нефтегазовый университет», г. Тюмень;
Мерданов Ш.М., д.т.н., профессор, зав. кафедрой «Транспортные и технологические системы», ФГБОУ ВПО «Тюменский государственный нефтегазовый университет», Почетный работник высшего профессионального образования Российской Федерации, г. Тюмень.
Работа поступила в редакцию 05.12.2013.
Библиографическая ссылка
Тарасенко А.А., Сильницкий П.Ф., Тарасенко Д.А. ПРОТИВОРЕЧИЯ В СОВРЕМЕННОЙ НОРМАТИВНО-ТЕХНИЧЕСКОЙ БАЗЕ ПРИ РЕМОНТЕ РЕЗЕРВУАРОВ // Фундаментальные исследования. – 2013. – № 10-15. – С. 3400-3403;URL: https://fundamental-research.ru/ru/article/view?id=33074 (дата обращения: 20.09.2024).