Засоление почв как природного, так и техногенного генезиса – один из наиболее распространенных типов деградации земель. Изучение вопросов трансформации почв при их засолении в пределах аридных районов всегда являлось крайне актуальным [6]. Однако для гумидных районов вопрос трансформации почв при техногенном засолении долгое время являлся менее значимым, хотя изменения почв носят не менее серьезный характер [4, 7]. При поступлении высокоминерализованных растворов происходит рост содержания солей в почвенном профиле, что приводит к комплексной трансформации химических и физических свойств почв. Отмечается рост минерализации почвенного раствора и формирование солевой корки, трансформация состава обменных катионов в сторону увеличения доли натрия, происходит изменение кислотно-основных свойств, увеличение плотности почв и снижение скорости фильтрации [3, 4, 6, 7, 8, 10]. Образование вторично засоленных почв в таежно-лесной зоне приводит к нарушению функционирования всей экосистемы.
Целью данного исследования являлась оценка изменения показателей кислотно-основного состояния почв при импактном воздействии минерализованных вод на дерново-подзолистые почвы.
Материалы и методы исследования
Оценка трансформации почв при техногенном засолении проводится различными методами: сравнительно-морфологическим и сравнительно-аналитическим на местах аварийных разливов высокоминерализованных вод, а также в результате проведения экспериментального моделирования их воздействия в различных природных условиях. Моделирование в лабораторных условиях миграции растворенных веществ в почвах позволяет выявить основные закономерности трансформации почв и проследить динамику протекающих в них процессов; определить факторы, влияющие на изменение свойств почв [3, 10, 11].
Экспериментальные исследования проводились на образцах гумусово-аккумулятивных горизонтов дерново-подзолистых среднесуглинистых почв на карбонатной морене хвойно-широколиственных лесов Калининградской области. Образцы почвы отбирались в пределах Гвардейского района Калининградской области. Территория характеризуется умеренным климатом, со среднегодовой суммой осадков около 760 мм [1]. Общее содержание углерода составляет 2,5 %. Почвы характеризуются слабокислой-нейтральной реакцией среды (pH – 4,5) в верхней части профиля. Почвенный поглощающий комплекс насыщен основаниями. Содержание обменного алюминия в горизонте А1 составляет 1,92 ммоль(+)/100 г, а водорода 0,13 ммоль(+)/100 г. Общее содержание водорастворимых солей составляет 0,005 %. В их составе количество ионов хлора и натрия не превышают 0,13 ммоль(+)/100 г и 0,095 ммоль(+)/100 г соответственно. Гранулометрический состав почв среднесуглинистый с содержанием физической глины в горизонте А1 18 – 20 %.
Лабораторный эксперимент по изучению изменения свойств почв гумидных ландшафтов под действием высокоминерализованных вод проводился в вертикально расположенных колонках из инертного материала, заполненных почвой с плотностью 1,0 г/см3. Внутренний диаметр колонок составлял 4 см, а длина – 10 см. В колонки подавался раствор солей с концентрацией 100 г/дм3 объемом 104 мм. Избыток раствора, профильтровавшийся через почвенную колонку, собирался в колбу-приемник.
В ходе эксперимента изучали скорость рассоления и трансформацию свойств почв под действием атмосферных осадков. На засоленных колонках моделировалось воздействие недельных, месячных, трехмесячных и годовых норм осадков (15, 60, 180 и 760 мм). Отмывки солей проводились дистиллированной водой. В качестве контрольной серии, по которой впоследствии были рассчитаны фоновые содержания веществ, использовались колонки без добавления высокоминерализованного раствора. Все эксперименты проводились в двойной повторности. Таким образом, общее количество колонок составило 12 штук.
В течение всего эксперимента после внесения растворов и стекания гравитационной влаги контролировался состав и содержание легкорастворимых солей, обменных кальция, магния и натрия, актуальной и обменной кислотности, а также общее содержание углерода как в фильтрационных водах, так и в почве.
Показатель актуальной кислотности (pH) и общее содержание легкорастворимых солей определяли потенциометрическим и кондуктометрическим методом в почвенной суспензии и в фильтрационных водах [2]. Определение обменной кислотности проводилось по методу Соколова [2]. В водной вытяжке и в фильтрационных водах проводили определение кальция и магния комплексонометрическим методом, а содержание ионов натрия проводилось на пламенном фотометре PFP фирмы Jenkins. [2]. Определение содержания органического углерода в почвах и фильтрационных водах выполнялось методом бихроматного окисления по Тюрину [2].
Результаты исследования и их обсуждения
Накопление в почве загрязняющих веществ определяется механизмами геохимической буферности почв. При этом происходят два противоположных процесса. С одной стороны, протекают процессы связывания техногенных веществ твердыми фазами (сорбция, седиментация, комплексообразование с органическим веществом и т.д.). С другой стороны, происходит изменение соотношения подвижных и связанных форм исходных форм химических элементов, присутствующих в почве. Происходят процессы десорбции, растворения способствующие переходу их из твердых фаз в почвенный раствор.
Поступление высокоминерализованных вод в почвы привело к росту количества легкорастворимых солей. Непосредственно после внесения раствора в колонки концентрация солей в поровом растворе, вытекающем из колонки, достигала 70 г/дм3 (таблица). В результате моделирования воздействия атмосферных осадков постепенно, по мере поступления различных доз дистиллированной воды, отмечалось снижение содержания легкорастворимых солей в фильтрационных водах и почвах. Непосредственно после внесения 15 мм дистиллированной воды содержание легкорастворимых солей в поровом растворе в среднем составляет 62–63 г/дм3. Резкое снижение концентраций до 4 г/дм3 в фильтрационных водах отмечается уже после моделирования месячной нормы осадков (60 мм), а после внесения годовой нормы минерализация поровых растворов не превышает фоновые значения (менее 0,5 г/дм3).
Стоит отметить, что также происходит значительный вынос водорастворимой органики из почв с фильтрационными водами (см. таблицу). Однако в отличие от поведения легкорастворимых солей максимум выноса органического вещества приходится на месячную норму осадков (60 мм) и составляет 272 мг/дм3. При последующих промывках общее содержание водорастворимого органического вещества снижается до 60 мг/дм3, что не превышает фоновые показатели (70 мг/дм3).
Поступление высокоминерализованного раствора NaCl в почвы приводит к ионному обмену натрия почвенного раствора на водород и алюминий почвенного поглощающего комплекса и подкислению почвенных растворов и почв. Так, сразу после фильтрации солей через колонку pH фильтрационных вод и засоленной почвы снизился на 0,5–1 единицу и составил 3,15 и 3,7 соответственно (см. таблицу). После промывки колонок 15 мм дистиллированной воды происходит постепенный рост pH и в почвах и в фильтрационных водах. Однако рост актуальной кислотности в поровых растворах замедлен по сравнению с почвами. Так, даже после добавления месячной нормы осадков (60 мм), pH фильтрационных вод не превышает 3,24 единиц, тогда как в почвах уже отмечается рост pH до 4,9 единиц. Поступление 180 мм дистиллированной воды в колонки приводит к дальнейшему росту актуальной кислотности поровых растворов до средних значений в 5,5 единиц, типичных для фоновых почв. После действия годовой нормы осадков на засоленные дерново-подзолистые почвы pH фильтрационных вод составлял 6,3, что превышает фоновые значения на 1–1,5 единицы как в почвах, так и в поровом растворе (таблица).
Химические свойства почв и фильтрационных вод в ходе эксперимента по моделированию процессов засоления-рассоления почв
Поровый раствор |
Почва |
|||||||||
Период |
минерализация |
pH |
H+ |
Al+ |
C |
минерализация |
pH |
обменные |
C |
|
H+ |
Al+ |
|||||||||
г/дм3 |
ммоль(+)/дм3 |
мг/дм3 |
г/дм3 |
ммоль(+)/100г |
мг/100г |
|||||
Заливка |
70 |
3,15 |
2,5 |
28 |
0 |
30 |
3,7 |
0,37 |
2,55 |
0 |
1 нед. |
63 |
3,20 |
2,0 |
18 |
0 |
22 |
3,8 |
0,16 |
2,54 |
0 |
1 мес. |
4 |
3,24 |
1,4 |
7 |
272 |
3 |
4,9 |
0,14 |
1,8 |
60 |
3 мес. |
1 |
5,50 |
1,2 |
1 |
70 |
0,3 |
6,3 |
0,12 |
1,9 |
95 |
1 год |
0,50 |
6,30 |
0,6 |
0,7 |
60 |
0,2 |
6,2 |
0,05 |
1,4 |
85 |
Фон |
0,40 |
4,50 |
0,7 |
0,7 |
70 |
0,2 |
4,5 |
0,22 |
2,9 |
60 |
Рост рН при удалении солей с модельными атмосферными осадками, по-видимому, связан с процессами гидролиза насыщенного натрием почвенного поглощающего комплекса.
Непосредственно после поступления легкорастворимых солей в почвы отмечается резкий рост содержания иона водорода в фильтрационных водах. Его концентрации превышает фоновые значения более чем в 1,5 раза и составляют 2,5 ммоль (+)/дм3.
При промывке 15 мм дистиллированной воды содержание водорастворимого водорода в поровом растворе не превышает 2,0 ммоль(+)/дм3, а внесение 3-месячной нормы привело к снижению концентраций иона водорода в растворе до 1,2. В конце эксперимента содержания водорода не превышали 0,7 ммоль(+)/дм3 в фильтрационных водах. Таким образом, полученные результаты свидетельствуют о выносе водорода из почв с гравитационными водами.
Подкислению почв и гравитационных вод способствует вытеснение из почвенного поглощающего комплекса водорастворимого алюминия. Его содержание значительно возрастает в поровом растворе, достигая концентрации в 28 ммоль(+)/дм3. При воздействии модельных атмосферных осадков концентрации алюминия в фильтрационных водах аналогично поведению водорода постепенно снижаются (см. таблица). При добавлении недельной нормы осадков содержание алюминия составляло 18 ммоль(+)/дм3. В дальнейшем поступление 60 мм дистиллированной воды в колонки привело к снижению концентраций иона алюминия в фильтрационных водах до 8 ммоль(+)/дм3. После воздействия трехмесячной нормы осадков практически достигли фоновых значений (0,7 ммоль(+)/дм3) и составляли 1,0 ммоль(+)/дм3. По окончании эксперимента концентрации алюминия, также как и водорода в поровом растворе, не превышали фоновых показателей, установленных по контрольным колонкам.
Аналогичное поведение характерно и для обменных ионов водорода и алюминия. Непосредственно после внесения минерализованного раствора концентрация иона водорода в почве составляла 0,37 ммоль(+)/100 г. Постепенно происходит снижение содержания обменного водорода. По окончании эксперимента его концентрации достигли 0,05 ммоль(+)/100 г, что ниже фоновых показателей в более чем 4 раза. Содержания обменного алюминия также в ходе эксперимента снижаются с 2,5 ммоль(+)/100 г до 1,4 ммоль (+)/100 г, при фоновых показателях в 2,9 ммоль(+)/100 г.
Полученные результаты подтверждаются данными модельных лабораторных экспериментов, выполненных Kotowski M. с соавт., по оценке возможности увеличения подвижности алюминия при поступлении солей аммония и натрия в подзолистых почвах [9].
М.А. Глазовская [5] ввела понятие геохимических стартеров. Геохимическими стартерами могут быть кислотные дожди или физиологически кислые удобрения, при воздействии которых приобретают подвижность соединения алюминия и железа, сорбированные, связанные с гумусом и гидроксидами железа и алюминия ранее накопившиеся тяжелые металлы [5]. Проведенные исследования показали, что таким геохимическим стартером в дерново-подзолистых почвах являются минерализованные пластовые воды, поступление которых приводит к нарушению кислотно-основного равновесия.
Выводы
Поступление легкорастворимых солей приводит к смещению ионного равновесия в ионно-солевом комплексе почв. Отмечается резкий рост содержания легкорастворимых солей в фильтрационных водах (до 70 г/дм3) и почвах непосредственно после засоления. В результате воздействия годовой нормы осадков минерализация растворов и почв снижается до фоновых показателей (0,4–0,5 г/дм3).
Происходит усиление выноса водорастворимого органического вещества. Максимальное содержание органического вещества в фильтрационных водах наблюдается при воздействии 60 мм модельных атмосферных осадков. При внесении годовой нормы осадков уровень водорастворимой органики не превышает фоновых значений.
Трансформация кислотно-основных свойств носит более длительный характер и даже после внесения годовой нормы осадков возвращения pH к фоновым значениям (4,5) не происходит. Так, показатель актуальной кислотности фильтрационных вод после воздействия годовой нормы осадков (760 мм) составляет 6,3.
Поступление высокоминерализованных вод приводит к резкому выносу водорода и алюминия с фильтрационными водами из почв. Так, концентрации иона водорода в гравитационных водах превышают фоновые значения контрольных колонок в 3,5 раза. Тогда как содержания алюминия более чем в 40 раз превышают фоновые показатели. По мере увеличения промывок отмечается постепенное снижение концентрации ионов алюминия и водорода в фильтрационных водах.
Таким образом, поступление высокоминерализованных растворов приводит к изменению кислотно-основных свойств почв и поровых растворов. Реализация механизма геохимической буферности дерново-подзолистых почв по отношению к солям натрия приводит сначала к их подкислению, а затем к подщелачиванию. Восстановления свойств почв до фонового уровня не происходит.
Научные исследования проведены при финансовой поддержке государства в лице Минобрнауки России (соглашение № 8673).
Рецензенты:
Добролюбов С.А., д.г.н., зам. декана географического факультета МГУ имени М.В. Ломоносова, г. Москва;
Курганова И.Н., д.б.н., доцент, ведущий научный сотрудник лаборатории почвенных циклов азота и углерода Института физико-химических и биологических проблем почвоведения РАН, г. Пущино.
Работа поступила в редакцию 08.10.2013.
Библиографическая ссылка
Ронжина Т.В., Кречетов П.П. ИЗМЕНЕНИЕ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ ПОЧВ В РЕЗУЛЬТАТЕ РЕАЛИЗАЦИИ МЕХАНИЗМОВ ГЕОХИМИЧЕСКОЙ БУФЕРНОСТИ ПРИ ИМПАКТНОМ ВОЗДЕЙСТВИИ МИНЕРАЛИЗОВАННЫХ ВОД НА ДЕРНОВО-ПОДЗОЛИСТЫЕ ПОЧВЫ // Фундаментальные исследования. – 2013. – № 10-6. – С. 1293-1296;URL: https://fundamental-research.ru/ru/article/view?id=32534 (дата обращения: 24.11.2024).