Новый класс перспективных конструкционных наноструктурированных объемных металлических материалов с субмикрокристаллической структурой, полученных с использованием технологий интенсивной пластической деформации (ИПД), например, путем равноканального углового прессования (РКУП) [1], обладая уникальными свойствами, уже сейчас имеет непосредственное практическое применение во многих областях техники. Однако широкое использование таких материалов предполагает расширение наших представлений о физической природе прочности и механизмах разрушения при различных видах и условиях нагружения [2, 3].
Целью настоящей работы является изучение прочности и механизмов разрушения алюминиевого сплава АК4-1 в исходном состоянии и в субмикрокристаллическом состоянии после равноканального углового прессования (РКУП) и экструзии.
Материал и методики исследования
Алюминиевый сплав АК4-1 (табл. 1) в исходном состоянии (пруток диаметром 40 мм) имел средний размер зерна 40 мкм. Сплав подвергали РКУ прессованию [1] при температуре 200 °С, 6 проходов. После РКУП проводили дополнительную экструзию при температуре 180 °С. Диаметр прутка заготовки после РКУП + экструзии составлял 28 мм. Средний размер зерна после вышеуказанной обработки (РКУП + экструзия) составил 300 нм.
Таблица 1 Химический состав алюминиевого сплава АК4-1 ( % по массе)
Cu |
Mg |
Fe |
Ni |
Si |
Ti |
Mn |
2,46 |
1,48 |
0,89 |
0,92 |
0,22 |
0,04 |
0,04 |
Определение стандартных характеристик исследуемого материала при статическом растяжении проводили на круглых образцах диаметром 3 мм. Испытание проводили на разрывной машине Р-10. Испытания на твердость проводили по методу Бринелля (НВ) с использованием ультразвукового твердомера МЕТ-У1.
Ударные испытания образцом с V-образным концентратором напряжения проводили на копре МК-30 при температурах от -196 до +300 °С. Размеры образцов были 10×10×55 мм. Образцы, предназначенные для испытания при низких температурах, охлаждали в жидком азоте или охлажденном бензине в течение 10 минут, затем переносили на копер и производили ударное разрушение. Образцы, предназначенные для испытания при высоких температурах, нагревали в печи в течение 10 минут, затем переносили на копер и разрушали.
Полученные изломы исследовали методами макро- и микрофрактографии. Микрофрактографические исследования проводили в растровом электронном микроскопе JSM-6092.
Результаты исследования и их обсуждение
В табл. 2 представлены механические свойства алюминиевого сплава АК4-1 в исходном состоянии и после РКУП + экструзия. Видно, что РКУ прессование и последующая экструзия повышают твердость сплава в 1,4 раза и прочностные характеристики более чем в 1,5 раза по сравнению с исходным состоянием. Однако повышение прочностных свойств сопровождается снижением пластичности сплава.
Таблица 2 Механические свойства алюминиевого сплава АК4-1 после различных видов обработки
Состояние сплава |
dср, мкм |
НВ |
sв, МПa |
s0,2, МПa |
d, % |
Исходное состояние |
40 |
81 |
274 |
258 |
20 |
РКУП + экструзия |
0,3 |
111 |
420 |
407 |
6 |
Температурная зависимость ударной вязкости (KCV) сплава АК4-1 в исходном состоянии и после РКУП + экструзии представлена на рис. 1. Видно, что в исследуемом интервале температур значение ударной вязкости сплава практически не меняется, что характерно для материалов с ГЦК структурой [4, 5]. Причем при всех температурах испытания ударная вязкость (KCV) сплава АК4-1 после РКУП + экструзии несколько ниже, чем ударная вязкость сплава в исходном состоянии.
Как уже отмечалось, при ударном испытании сплава АК4 в области высоких температур образцы нагревали в течение 10 минут. Чтобы убедиться в том, что такой нагрев не повлиял существенно на свойства сплава, замеряли твердость образцов, испытанных при температуре 300 °С, и сравнивали ее с твердостью сплава до нагрева. Такие исследования показали, что твердость сплава АК4-1 в исходном состоянии после испытания при температуре 300 °С несколько уменьшилась, однако твердость сплава после РКУП + экструзии практически не изменилась (табл. 3). Можно предположить, что сплав АК4-1 после РКУП + экструзии не испытал необратимых фазовых превращений при нагреве до температуры испытания 300 °С.
Рис. 1. Температурная зависимость ударной вязкости (KCV) алюминиевого сплава АК4-1 в исходном состоянии и после РКУП + экструзия
Таблица 3 Твердость сплава АК4-1 после испытания образцов при комнатной температуре и 300 °С
Состояние |
Твердость |
20 °С |
300 °С |
Исходное состояние |
HВ |
81 |
72 |
После РКУП + экструзия |
HВ |
111 |
109 |
Рассмотрим макрофрактографические особенности строения ударных изломов сплава АК4-1 в исходном состоянии. Все изломы макровязкие, состоящие из плоской центральной части, губ среза и периферийной области сжатия в месте удара ножа копра [5] (рис. 2 а, г, ж, к). С повышением температуры испытания шероховатость центральной части изломов увеличивается; возрастает размер губ среза (табл. 4).
Таблица 4 Размер губ среза λ, % на поверхности ударных изломов сплава АК4-1
Состояние сплава |
Температура испытания, °С |
|||
-196 |
20 |
180 |
300 |
|
Исходное состояние |
28 |
38 |
38 |
40 |
После РКУП + экструзия |
55 |
38 |
48 |
55 |
Рис. 2. Общий вид (а, г, ж, к) и микрорельеф ударных изломов сплава АК4-1 в исходном состоянии, полученных при температурах испытания: -196 °С (а, б, в); 20 °С (г, д, е); 180 °С (ж, з, и); 300 °С (к, л, м): б, д, з, л - очаг разрушения; в, е, и, м- центральная часть излома. б, з, л- х200; д- х400; е, м- х1000; в, н - х1000
Микрорельеф ударных изломов алюминиевого сплава АК4-1 в исходном состоянии, полученных при всех исследуемых температурах испытания, ямочный. Ямки образуются прямо после надреза, т.е. зона θ [4, 5] в очаге разрушения не образуется (рис. 2 б, д, з, л). В центральной части излома (рис. 2 г, е, и, м) ямки глубокие, неоднородные по размерам и строению.
Ударные изломы сплава АК4-1 после РКУП + экструзии (рис. 3 а, г, ж, к) имеют строение, аналогичное строению изломов сплава в исходном состоянии, однако отличаются меньшей шероховатостью центральной части и большим размером губ среза (см. табл. 4).
Рис. 3. Общий вид (а, г, ж, к) и микрорельеф ударных изломов сплава АК4-1 после РКУП + экструзии, полученных при температурах испытания: -196 °С (а, б, в); 20 °С (г, д, е); 180 °С (ж, з, и); 300 °С (к, л, м): б, д, з, л - очаг разрушения; в, е, и, м- центральная часть излома. б, д, з, л - х400; в, е, и, м - х2000
Микрорельеф ударных изломов алюминиевого сплава АК4-1 после РКУП + экструзии, полученных при всех температурах испытания, ямочный. Изломы, полученные при температуре испытания -196 °С, имеют неоднородные по величине ямки с небольшими хрупкими фрагментами (рис. б, в). Вблизи очага разрушения изломов, полученных при комнатной и повышенных температурах (рис. 3 д, з, л), ямки вытянутые, чередующиеся с бесструктурными участками. Центральная часть таких изломов состоит из больших, равноосных, глубоких ямок, в центре которых часто видны поры (рис. 3 е, и, м).
Так как сплав АК4-1 предназначен для работы при повышенных температурах, изучали влияние последующей термической обработки на механические свойства данного сплава. С этой целью образцы из сплава АК4-1 после РКУП + экструзии нагревали до различных температур, выдерживали 30 минут и охлаждали на воздухе. Затем проводили механические испытания. Результаты испытаний представлены на рис. 4.
Рис. 4. Изменение ударной вязкости, твердости и прочностных свойств σв и σ0,2 сплава АК4-1 после РКУП + экструзии и последующего нагрева
Из приведенного рисунка видно, что нагрев сплава АК4-1 после РКУП + экструзии до температуры 200 oС практически не изменяет твердость и прочностные свойства сплава. Дальнейшее повышение температуры нагрева приводит к интенсивному снижению твердости и прочности сплава.
Выводы
-
РКУ прессование и последующая экструзия повышают твердость сплава АК4-1 в 1,4 раза и прочностные характеристики более чем в 1,5 раза по сравнению с исходным состоянием. Однако повышение прочностных свойств сопровождается снижением пластичности сплава.
-
В интервале температур -196...+300 °С значение ударной вязкости (KCV) сплава АК4-1 в исходном состоянии и после РКУП + экструзия практически не меняется.
-
При всех исследуемых температурах испытания сплав АК4-1 разрушается вязко с образованием ямочного микрорельефа.
-
Нагрев сплава АК4-1 после РКУП + экструзия до температуры 200 °С практически не изменяет твердость и прочностные свойства сплава.
Работа выполнена при финансовой поддержке ФЦП (ГК № 16.513.11.3018).
Рецензенты:
-
Кушнаренко В.М., д.т.н., профессор, зав. кафедрой деталей машин и прикладной механики Оренбургского государственного университета, г. Оренбург;
- Кучеренко М.Г., д.ф.-м.н., профессор, зав. кафедрой радиофизики и электроники
Библиографическая ссылка
Клевцов Г.В., Валиев Р.З., Исламгалиев Р.К., Клевцова Н.А., Кашапов М.Р., Фесенюк М.В. ПРОЧНОСТЬ И МЕХАНИЗМ РАЗРУШЕНИЯ НАНОСТРУКТУРИРОВАННОГО АЛЮМИНИЕВОГО СПЛАВА АК4-1 В ШИРОКОМ ИНТЕРВАЛЕ ТЕМПЕРАТУР // Фундаментальные исследования. 2012. № 3-2. С. 391-395;URL: https://fundamental-research.ru/ru/article/view?id=29615 (дата обращения: 02.04.2025).