За последние годы в литературе появились многочисленные исследования, посвященные изучению фактора роста эндотелия сосудов (ФРЭС) при диагностике различных заболеваний [31, 33, 39]. ФРЭС -
димер, гепарин-связывающий белок, с молекулярной массой 34-42 кДа. ФРЭС выделил в 1989 году Наполеон Феррара и в настоящее время установлен ген, отвечающий за синтез данного белка [37, 38]. ФРЭС, взаимодействуя с двумя близкими по строению мембранными тирозинкиназными рецепторами (рецепторы ФРЭС-1 и ФРЭС-2), активирует их и запускает сигнальный каскад процессов, стимулирующих рост и пролиферацию клеток эндотелия [48].
За последние 10 лет начато активное изучение роли ангиогенеза в развитии целого ряда заболеваний. Ангиогенез отнесен к типовым процессам, приводящим к образованию новых кровеносных сосудов от существующей сосудистой сети [42, 44, 47]. Он необходим для нормального роста эмбриональных и постнатальных тканей, пролиферации эндометрия, созревания в яичнике фолликула и желтого тела, заживления ран, образования коллатеральных сосудов, стимулированных ишемией [24]. Образование кровеносных сосудов определяется двумя процессами: васкулогенезом и ангиогенезом. Васкулогенез означает дифференцировку ангиобластов (предшественников эндотелиальных клеток) у эмбрионов в кровяных островках, которые после слияния формируют сердечно-сосудистую систему или васкуляризируют эндодермальные органы [25]. Ангиогенез включает в себя пролиферацию и миграцию эндотелиальных клеток в первичных васкулярных структурах и способствует васкуляризации эктодермальных и мезенхимных органов, реконструкции капиллярной сети [30]. В процессе ангиогенеза эндотелиальные клетки начинают делиться (скорость удвоения их популяции возрастает почти в 100 раз), образуя эндотелиальную почку, которая прорывает базальную мембрану и внедряется в соединительную ткань. Активацию эндотелиальных клеток обеспечивают факторы роста, которые образуются в самих эндотелиальных клетках, а также компоненты внеклеточного матрикса [40, 44, 48, 49]. Прекращение действия этих факторов возвращает эндотелиальные клетки в состояние покоя [60].
Основным стимулом активации ангиогенеза при физиологических и патологических состояниях является недостаток кислорода [41, 50]. Известно, что гипоксия способствует накоплению индуцируемых гипоксией факторов - HIF (HIF-1α и HIF-1β) [8]. Эти факторы проникают в ядро клетки, связываются с соответствующим HIF-ответственным участком и изменяют транскрипцию многих генов, в том числе генов фактора роста эндотелия сосудов [17]. В результате возникает увеличение экспрессии проангиогенных факторов, включая ФРЭС и факторы роста фибробластов [52]. Существует ряд клеток, способных повышать уровень ФРЭС «in vitro» во время гипоксии. К ним относятся фибробласты, миоциты гладкой и поперечнополосатой мускулатуры, пигментный эпителий сетчатки, астроциты и эндотелиальные клетки, а также некоторые опухолевые клетки [64]. В тот момент, когда действие проангиогенных факторов превышает действие антиангиогенных, эндотелиальные клетки переходят из обычного дремлющего состояния в активное и происходит «включение ангиогенеза» [66].
В настоящее время выявлены и активаторы, и ингибиторы ангиогенеза, которые прямо или опосредованно активируют и подавляют пролиферацию эндотелиальных клеток и рост сосудов [68, 70]. Регуляция ангиогенеза представляет собой динамический процесс взаимодействия ингибиторов и активаторов.
Важное значение после «включения ангиогенеза» имеет разрыв базальных мембран и внеклеточного матрикса, главным образом, в результате повышения активности матричных металлопротеиназ (ММП) [75].
ММП играют важную роль в процессе ангиогенеза. Они относятся к семейству Zn2+- и Са2+-зависимых эндопептидаз, участвующих в ремоделировании соединительной ткани посредством разрушения ее органических компонентов при физиологических значениях рН. Свое название ММП получили за способность специфически гидролизовать основные белки межклеточного матрикса [75].
Эти изменения матрикса способствуют миграции эндотелиальных клеток во внесосудистое пространство и активному протеолизу межклеточного матрикса [52]. В результате происходит организация эндотелиальных клеток в трубочки с просветом и образуется новая капиллярная сеть. Процесс роста капилляров продолжается, пока не будет достигнута достаточная близость с клеткой. Затем ангиогенез вступает в фазу покоя (за исключением ангиогенных циклов в женской репродуктивной системе). Каждое увеличение тканевой массы сопровождается неоваскуляризацией, что поддерживает адекватную сосудистую плотность [60].
В процессе развития злокачественных новообразований после достижении опухолевого образования диаметра 2-4 мм ее дальнейший рост требует образования сети капилляров из эндотелиальных клеток, выстилающих мелкие венулы [41, 42, 43, 44, 45, 46] При наличии устойчивого баланса между ангиогенными и антиангиогенными факторами опухолевые клетки могут оставаться на длительный промежуток времени в неактивном состоянии. Опухолевый рост начинается в результате преобладания активности факторов ангиогенеза [11, 21, 34]. Формирующаяся в процессе опухолевого роста капиллярная сеть заметно отличается от нормальной по морфологическому строению. Формирование сосудов в опухолях происходит на фоне извращенной митогенной стимуляции и измененного экстрацеллюлярного матрикса. Это приводит к развитию неполноценных сосудов преимущественно капиллярного типа, имеющих нередко прерывистую базальную мембрану и нарушенную эндотелиальную выстилку. Эндотелий может замещаться опухолевыми клетками, а иногда и вовсе отсутствовать [16]. Первоначально сосудистая сеть возникает в прилежащих к опухоли тканях, что впоследствии обеспечивает замещение их клетками опухоли [79].
В серии экспериментальных и клинических исследований установлено, что при активации опухолевого роста усиливается экспрессия ФРЭС и остальных факторов роста (фактор роста фибробластов, эпидермальный фактор роста, трансформирующий фактор роста-α). Это обеспечивает развитие и формирование сосудистого русла опухоли, что способствует ее метастазированию [32, 53, 57, 62, 78].
В настоящее время начато исследование концентрации факторов роста в сыворотке крови при различных заболеваниях. В последнее десятилетие установлено, что активация ангиогенеза сопровождает целый ряд заболеваний: ревматоидный артрит, атеросклеротическое поражение сосудистого русла и др. [44, 47, 62]. Наибольший интерес представляет оценка количественного содержания основного из них, ФРЭС, в сыворотке крови при злокачественных новообразованиях. Считается, что определение в сыворотке крови ФРЭС у онкологических больных может быть применено для оценки эффективности проводимой терапии, прежде всего таргетной, в динамике лечения, предоставлять прогностическую информацию, в качестве дополнительного исследования, использованного в дифференциальной диагностике [57, 59, 61].
Так, за последние годы проведен целый ряд исследований по изучению экспрессии ФРЭС в клетках опухолевой ткани и в сыворотке крови у больных раком молочной железы, легкого, простаты, остеосар-
комы [6, 7, 14].
Важной ступенью в понимании путей развития рака почки (РП) стало признание ФРЭС как главного регулятора опухолевого ангиогенеза [4]. Опухоли почки неоднородны по своему составу и представлены несколькими видами наследственных форм почечно-клеточных карцином [13, 18, 67]. К ним относятся светлоклеточная почечно-клеточная карцинома (von Hippel-Lindau syndrome), наследственная папиллярная карцинома почки, хромофобная почечно-клеточная карцинома (Birt-Hogg-Dube syndrome) [58, 73]. В канцерогенезе светлоклеточных карцином наиболее характерным событием является инактивация гена VHL (von Hippel-Lindau syndrome), в результате чего происходит аномальная продукция многих факторов роста, в том числе молекул, способствующих увеличенному ангиогенезу. Белок VHL входит в состав E3-убиквитинлигазы, которая в условиях нормальной оксигенации способствует присоединению убиквитина к транскриптомным факторам (hipoxia-inducible factor -
HIF-1α, HIF-2α, HIF-3α) [60, 61]. В условиях гипоксии VHL-комплекс в составе E3-убиквитинлигазы не связывается с транскриптомными факторами. Соответственно факторы HIF-1α и HIF-1β накапливаются в клетках. И этот комплекс проникает в ядро, связывается с соответствующим HIF-ответственным участком и изменяет транскрипцию многих генов, в том числе гена, ответственного за экспрессию ФРЭС-A и других факторов ангиогенеза. Таким образом, мутация в гене VHL приводит к накоплению факторов, стимулирующих ангиогенез [65, 73, 74].
Известно, что ФРЭС не выявлен в здоровой ткани почки, однако увеличенная экспрессия белка имеет место при всех разновидностях опухолей почек. Плотность микрососудов, совместно с уровнем экспрессии матриксной металлопротеиназы-2, указывают на опухоли больших размеров более 7 см [26, 71].
Установлено, что у больных РП имеет место достоверное увеличение содержания ФРЭС в сыворотке крови по сравнению с практически здоровыми лицами. Уровень ФРЭС сыворотки, полученной из вен почек, пораженных опухолью, достоверно отличался от уровня ФРЭС сыворотки, полученной из контралатеральных почек. Кроме того, уровень ФРЭС в сыворотке достоверно менялся после нефрэктомии [76]. Уровень ФРЭС в сыворотке был связан с объемом опухоли почки и наличием метастазов. Также установлено, что при уровне сывороточного ФРЭС выше 100 пг/мл чувствительность этого теста при РП составляет 80 %, а специфичность ‒ 72,7 %, поэтому определение сывороточного ФРЭС может рассматриваться в качестве возможного маркера РП [57]. В ряде исследований показано, что изменение уровня ФРЭС не может быть использовано в качестве независимого прогностического маркера при РП. Также установлено, что определение уровня ФРЭС в сыворотке крови может иметь диагностическое значение при выявлении больных с быстрым прогрессированием заболевания [77]. В работах М.Ф. Трапезниковой, П.В. Глыбина, Н.Е. Кушлинского и др. (2009) отмечено, что в опухолевой ткани при РП имеют место более высокие уровни ФРЭС по сравнению с неизменённой тканью почки. При этом уровень ФРЭС в опухоли достоверно повышался при снижении степени дифференцировки рака и увеличении стадии заболевания [6, 7, 12, 13, 29].
Исследования клинико-диагностического значения изменения уровня ФРЭС в сыворотке крови у больных РП продолжаются в связи появлением новых методов таргетной терапии.
В ходе молекулярно-генетических исследований выделены потенциальные мишени для противоопухолевого воздействия, ассоциированные с инактивацией гена VHL, гиперпродукцией HIF или активацией сигнального пути P3IK-АКТ-mТOR, которые регулируют процессы неоангиогенеза в опухолевой ткани: ФРЭС, фактор роста тромбоцитов (ТФР), тирозинкиназные рецепторы к ростовым факторам (ФРЭСR, ТФРR), а также сигнальный белок mTOR [9, 19, 51, 54]. Доказана эффективность при почечно-клеточных опухолях 6 таргетных агентов, воздействующих на данные мишени: моноклональных антител к ФРЭС (бевацизумаб), ингибиторов ФРЭСR (сунитиниб, сорафениб, пазопаниб), ингибиторов mTOR (темсиролимус, эверолимус). Каждому препарату приписывается своя лечебная
ниша [1, 5, 19, 23, 35, 54].
Однако до настоящего времени оптимальный режим таргетной терапии распространенного РП не определен. Более того первые результаты применения в клинической практике указанной принципиально отличающейся группы препаратов при лечении больных РП привели к появлению новых прикладных проблем. Так, не установлены особенности таргетной терапии больных с таргет-рефрактерными опухолями и «неподходящих» пациентов, которые не были включены в клинические испытания. Не определены показания к паллиативной нефрэктомии и таргетному лечению, основные маркеры эффективности проводимого лечения [1, 23, 27, 63, 72].
Развитие рака мочевого пузыря (РМП) также связывают с выявлением у больных целого ряда генетических факторов риска. Установлено, что для начала развития раковой опухоли мочевого пузыря необходимо наличие генетической мутации, определяющей возможность неконтролируемого деления клеток уротелия. Специфичными для РМП мутациями являются: активация онкогена HRAS1, инактивация супрессорного гена RB1, повреждения генов, регулирующих пролиферацию (CDKN2A и INK4B), повреждение антионкогена р53, инактивация гена «mismatch» репарации ДНК [10], делеция гена р16, микросателлитная нестабильность локуса 9р, делеция гена ТР53, мутация в 7-м экзоне гена FGFR3 [2, 55]. Подтверждением распространенного мнения о том, что РМП ‒ это болезнь всей слизистой, является высокая частота встречаемости многих из вышеперечисленных мутаций у одного и того же пациента не только в опухолевой ткани, но и в нормальном уротелии [2].
В настоящее время выделены наиболее значимые факторы ангиогенеза при РМП, для которых выявлены корреляции с клинико-морфологическими признаками заболевания и его исходом [28, 36, 48, 49]. К ним относятся плотность микрососудов, факторы, индуцируемые гипоксией (ФРЭС и другие) [17, 34, 52]. Основным фактором активации опухолевого ангиогенеза при РМП также считается ФРЭС [4, 11, 25, 26, 62]. В исследовании Шахпазян Н.К. (2010) установлено, что у больных немышечно-инвазивным РМП (НМИРМП) повышение уровня ФРЭС в сыворотке крови связано с активацией процесса опухолевого роста [15]. Исследование уровня ФРЭС у больных РМП является целесообразным, так как его уровень коррелирует с плотностью микрососудов в опухолевой ткани [2,3]. ФРЭС относят к прогностическим факторам при РМП [22, 55]. По мере увеличения проницаемости сосудов, а следственно, и увеличении инвазивности и способности к метастазированию опухоли, уровень ФРЭС значительно повышается и в сыворотке крови больных инвазиным РМП [69]. Определение его уровня в сыворотке крови на дооперационном этапе может быть прогностическим маркером для оценки риска развития рецидива при инвазивном РМП после цистэктомии [20, 55]. Количественное определение уровня ФРЭС также помогает диагностировать метастазы опухоли (при концентрации в крови > 400 пг/мл) [20].
Несмотря на большое чисто исследований, клинико-диагностическое значение исследования ФРЭС в сыворотке крови у больных с опухолевыми заболеваниями почек и мочевого пузыря не определено [15, 21].
В проводимых с 2009 года исследованиях содержания ФРЭС в сыворотке крови в лаборатории ЦНИЛ ГОУ ВПО «Саратовский ГМУ им. В.И. Разумовского Минздравсоцразвития России» показано, что исследования содержания ФРЭС в сыворотке крови могут быть предложены в качестве лабораторных предикторов и критериев прогноза начальных этапов формирования атеросклеротического поражения сосудистого русла, а также у пациентов с онкоурологическими заболеваниями (РП и НМИРМП) для оценки активности опухолевого роста и в диагностике рецидива.
Представленный анализ отечественной и зарубежной литературы, собственные результаты исследования являются основанием для широкого применения количественного определения ФРЭС в сыворотке крови в практике работы клинико-диагностических лабораторий. Данный показатель можно отнести к основным биомаркерам, характеризующим процессы включения «ангиогенеза» при различных заболеваниях. У больных РП и НМИРМП подъем содержания ФРЭС в сыворотке крови можно считать подтверждающим показателем рецидива заболевания.
Рецензенты:
Карякина Е.В., д.м.н., профессор, в.н.с. отдела лабораторной и функциональной диагностики ФГУ «СарНИИТО» Минздравсоцразвития России, г. Саратов;
Конопацкова О.М., д.м.н., профессор кафедры факультетской хирургии и онкологии им. С.Р. Миртворцева ГОУ ВПО Саратовского ГМУ им. В.И. Разумовского Минздравразвития России, г. Саратов.
Работа поступила в редакцию 26.08.2011.
Библиографическая ссылка
Захарова Н.Б., Дурнов Д.А., Михайлов В.Ю., Понукалин А.Н., Никитина В.В., Занкина О.В., Леонова М.Л. ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ ИССЛЕДОВАНИЯ ФАКТОРА РОСТА ЭНДОТЕЛИЯ СОСУДОВ В СЫВОРОТКЕ КРОВИ // Фундаментальные исследования. – 2011. – № 11-1. – С. 215-220;URL: https://fundamental-research.ru/ru/article/view?id=28979 (дата обращения: 23.11.2024).