Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,222

ESTIMATION OF SELF-REGULATION PROCESSES BY EMOTIONAL STRESS

Б.К. Койчубеков
Исследовались сложность и регулярность динамики сердечного ритма на основе анализа нелинейных показателей в процессе проведения теста «реакция на движущийся объект». Если в исходном состоянии управляемый орган, в данном случае синусовый узел, имеет недостаточное число степеней свободы, то в ответ на функциональную нагрузку регуляция со стороны вегетативной нервной системы направлена на увеличение «хаотичности» сердечного ритма. В последующем происходит выход на «рабочий» уровень напряжения симпатической нервной системы, и ритм становится более регулярным.
Complexity and regularity of cardiac rhythm basing onto analysis of non-linear parameters during “reaction to moving object” test was explored. If in the initial state controlled organ, sinoatrial node in this case, has insufficient degrees of freedom, that answer for the functional load regulation from vegetative nervous system oriented to increasing of cardiac rhythm’s “chaotic character”. In next period moving to the sympathetic nervous system operating level occurs and rhythm will be more regular.

В процессе приспособления организма человека к факторам внутренней и внешней среды идет постоянный процесс саморегуляции, направленный на поддержание основных физиологических констант. При этом для многих биологических объектов характерно «хаотическое» поведение, ситуации неопределенности как результат поиска состояния уравновешивания с окружающей средой. В связи с этим в последнее время нарастает интерес исследователей к нелинейным математическим методам анализа, проводимым в рамках так называемой «теории детерминированного хаоса».

Целью исследования явилось изучение процессов вегетативной регуляции кардиоритма на основе линейных и нелинейных показателей при состояниях, характеризующихся нервно-эмоциональными нагрузками. Для этого использовались элементы теста РДО – реакция на движущийся объект.

Материалы и методы

В сеансах РДО длительностью 25 минут приняли участие 40 юношей в возрасте 18-21 год. В течение теста записывалась кардиоинтервалограмма, по которой рассчитывались линейные (спектральные) [1] и нелинейные показатели: корреляционная размерность (D2) и корреляционная энтропия (К2) [4], показатели скаттерограммы - SD1, SD2, SD1/SD2 [5], энтропийные характеристики матрицы вероятности переходов кардиоинтервалов [2].

Так как показатель корреляционной размерности Dимел достаточно большую вариабельность в пределах выборки, предварительно, до проведения теста, на основе кластерного анализа среди всех обследованных были выделены три группы. Средние значения корреляционной размерности и корреляционной энтропии приведены в таблице 1.

Таблица 1

Нелинейные показатели сердечного ритма

Показатель

1 группа

(n = 16)

2 группа

(n = 13)

3 группа

(n = 11)

D2

5,215±0,105

6,196±0,080*

4,396±0,208*

К2

3,209±0,122

3,217±0,077

3,050±0,167

 

* - достоверные отличия по сравнению с предыдущим кластером (р<0,05)

Результаты и их обсуждение

Во всех трех исследованных группах в сеансах работы условно были выделены два этапа: в течение первого этапа (Р1) количество ошибок возрастало (фаза врабатывания), в течение второго (Р2) – снижалось (фаза стабильной работоспособности).

Изменения линейных характеристик сердечного ритма в течение теста анализировались по спектральной характеристике кардиоинтервалограммы – процентному содержанию высоко- и низкочастотных составляющих – HF%, LF%, VLF%. Как видно из рис. 1, в исходном состоянии (ИС) в спектре КИГ лиц первой и второй групп выраженность волн диапазона HFи LFпримерно одинакова, т.е. наблюдался баланс в активности симпатического (СНС) и парасимпатического (ПСНС) отделов ВНС. В третьей группе этот баланс сдвинут в сторону ПСНС, на что указывает максимум в области высокочастотных волн HF%.

На первом этапе (Р1) проведения теста РДО происходила перестройка структурно-функциональной организации процессов регуляции сердечного ритма. Если судить по спектральным характеристикам, то можно отметить снижение процентного содержания высокочастотной составляющей HF% и увеличение процентного содержания низкочастотной составляющей LF% у лиц первой и второй групп. В третьей группе снижение показателя HF% сопровождалось достоверным увеличением процентного содержания VLF- очень медленных волн. Эти изменения показывают, что на первом этапе теста РДО происходил сдвиг вегетативного баланса в сторону симпатического отдела ВНС как результат снижения активности ПСНС и повышения активности СНС. Фаза врабатывания характеризовалась напряжением в системе регуляции сердечного ритма, которое более выражено в третьей группе, поскольку в процесс регуляции включаются высшие вегетативные центры, что выразилось в виде увеличения показателя VLFспектра КИГ.

.
ИС – исходное состояние, Р1 – первый этап теста РДО, Р2-второй этап теста РДО

Рис. 1. Изменения спектральной характеристики СР в течение теста РДО

На втором этапе (Р2) теста происходил дальнейший сдвиг вегетативного баланса, однако преимущественно за счет снижения активности парасимпатического отдела. Как видно из рис. 1, в фазе стабильной работоспособности мощность LF% во всех трех группах не изменялась, а достоверно уменьшалось процентное содержание высокочастотного компонента спектра (HF%). При этом у лиц третьей группы наблюдалось дальнейшее увеличение показателя VLF%.

Таким образом, спектральные характеристики кардиоинтервалограммы показывают, что общая тенденция при прохождении всех этапов теста РДО - исходного состояния покоя и двух этапов слежения – выражается в последовательном смещении вегетативного баланса в сторону СНС за счет изменений в обоих отделах на первом этапе и преимущественно за счет снижения тонуса ПСНС – на втором этапе.

В матрицах вероятностей взаимных переходов были выявлены достоверные изменения энтропии диагонали H(D) на первом этапе проведенного теста, что привело к снижению энтропии всей матрицы H(М). На втором этапе тестирования, по сравнению с предыдущим, энтропийные показатели существенных изменений не претерпевали (таблица 2).

Таблица 2

Изменения энтропийных показателей в течение теста РДО

Показатель

N

Сравнение исходного состояния с первым этапом РДО

Сравнение первого и второго этапов РДО

Z

p-уровень

Z

p-уровень

H(M)

40

2,131

0,033*

0,064

0,948

H(D)

40

2,823

0,004*

0,464

0,642

H(T)

40

1,514

0,129

0,746

0,455

H(E)

40

1,103

0,269

0,821

0,411

H(M/D)

40

1,954

0,050*

1,104

0,269

H(T/E)

40

0,284

0,776

0,068

0,945

SD1

40

4,335

0,000*

0,097

0,922

SD2

40

2,929

0,003*

0,227

0,820

SD1/SD2

40

4,2705

0,000*

1,113

0,265

 

* - достоверные различия зависимых выборок (p<0,05)

Приведенные в таблице данные отражают изменения по обследованной группе в целом. При выяснении индивидуальных особенностей по каждой из групп оказалось, что они наиболее характерны для первой группы, поскольку во второй и третьей группах достоверных отличий на различных этапах теста не выявлялось вовсе.

Наличие таких особенностей нелинейной динамики демонстрируют показатели скаттерограммы. На рис. 2 представлена скаттерограмма обследованного из первой группы. На первом этапе РДО произошло небольшое смещение «облака» в область более коротких кардиоритмов, на втором этапе значительных изменений не наблюдалось, отношение SD1/SD2 сохранилось на прежнем уровне.

.

ИС – исходное состояние, Р1 – первый этап теста РДО, Р2-второй этап теста РДО

Рис. 2. Скаттерограмма обследованного из первой группы

Во второй группе, где в исходном состоянии отношение SD1/SD2 имело самые низкие значения, кривая динамики имела сходство с динамикой совершаемых ошибок. На первом этапе показатель возрастал (рис. 3), это произошло за счет возрастания стандартного отклонения SD1 и снижения стандартного отклонения SD2.

Графически такие изменения отображаются в виде преобразования «облака» скаттерограммы из «торпедовидной» в «шарообразную» форму. То есть более быстрые изменения кардиоритма превосходят по интенсивности низкочастотные модуляции.

.

ИС – исходное состояние, Р1 – первый этап теста РДО, Р2-второй этап теста РДО

Рис. 3. Скаттерограмма обследованного из второй группы

На втором этапе, в период стабильной работоспособности, когда количество совершаемых ошибок уменьшалось, наблюдалась тенденция к снижению SD1/SD2.

В третьей группе в состоянии покоя наблюдались самые высокие значения SD1/SD2. У лиц данной группы, в отличие от предыдущих, происходило снижение этого показателя в течение всего сеанса РДО. Как видно из скаттерограмм на рис. 4, «шарообразная» форма в исходном состоянии «вытягивалась» вдоль биссектрисы на втором этапе теста.

.
ИС – исходное состояние, Р1 – первый этап теста РДО, Р2 – второй этап теста РДО

Рис. 4. Скаттерограмма обследованного из третьей группы

Особенности динамики корреляционной размерности заключались в следующем. В первой группе на этапе врабатывания происходило увеличение среднего значения показателя D2 с4,989±0,081 до 6,272±0,173 и недостоверное снижение на этапе оптимальной работоспособности до 5,774±0,216. Во второй группе изменения выявлены только на этапе Р2 - произошло снижение исследуемого показателя с 6,151±0,185 до 5,983±0,179. В третьей группе наблюдалось повышение Dс 4,346±0,199 до 5,687±0,525 и последующее снижение сложности в организации сердечного ритма.

Корреляционная энтропия (K2) имела иную динамику. В первой группе этот показатель возрастал в фазе врабатывания и снижался в фазе стабильной работоспособности. Во второй группе происходило лишь снижение энтропии на втором этапе РДО, а в третьей группе K2 достоверных изменений не претерпевал.

Таким образом, применение элементов операторского слежения позволило отслеживать процессы регуляции сердечного ритма при состоянии нервно-эмоционального напряжения. Подобно тому, как периодические изменения СР наблюдаются в низко- и высокочастотном диапазонах, в нерегулярной динамике можно выделить колебания на коротких (микроинтервалах) и длительных (макроинтервалах) временных отрезках. Изменения СР на микроинтервалах времени отражаются на структуре матрицы взаимных переходов кардиоритмов и характеризуются ее энтропийными показателями. Также они могут быть описаны на основе анализа показателя SD1 скаттерограммы. В течение всего теста РДО наблюдалось повышение активности симпатического и снижение активности парасимпатического отдела ВНС. Эти влияния привели к изменению всей последовательности R-R-интервалов. Так, увеличение энтропии диагонали матрицы H(D) и снижение стандартного отклонения SD1 указывают на стабилизацию ритма в микроинтервалах времени.

Нелинейные показатели являются количественным выражением «хаотичности» динамики сердечного ритма и в отличие от линейных спектральных характеристик выявляют особенности регуляции СР на каждом из этапов проведенного теста. Так, наблюдались изменения сложности динамики СР, которая оценивалась по корреляционной размерности и имела индивидуальные особенности в каждой из исследуемых групп. Если в исходном состоянии управляемый орган, в данном случае синусовый узел, имеет недостаточное число степеней свободы, то в ответ на функциональную нагрузку регуляция со стороны вегетативной нервной системы направлена на увеличение вариативности сердечного ритма. В последующем происходит выход на «рабочий» уровень напряжения симпатической нервной системы, и ритм становится более регулярным (первая и третья группы). В случае, если корреляционная размерность до проведения теста была высокой (лица второй группы), переходной этап проходил без существенных изменений с последующим упорядочением последовательности R-R-интервалов на этапе «стабильной работоспособности».

Полученные данные позволяют сделать некоторые предположения относительно механизмов, приводящих к нерегулярной динамике сердечного ритма. Известно, что структура регуляции сердечного ритма достаточно сложна, в нее помимо сегментарных отделов ВНС вовлечены целый ряд мозговых образований – эрготропные и трофотропные центры, осуществляющие специализированные и интегративные функции и, возможно, имеющие отношение к выработке VLF-колебаний сердечного ритма [6]. Учитывая повышение мощности VLF% на протяжении теста, можно предположить, что в третьей группе перестройки в динамике СР связаны с активностью как эрготропной, так и трофотропной надсегментарной системами, соотношение между которыми определяет различную нелинейную динамику сердечного ритма при переходе от одного этапа РДО к другому.

 

СПИСОК ЛИТЕРАТУРЫ:

1. Баевский Р.М., Иванов Г.Г., Чирейкин В.В. [и др.]. Анализ вариабельности сердечного ритма при использовании различных кардиографических систем (методические рекомендации) / Вестник аритмологии. – 2001. – №24. – С. 65 – 87.

2.  Зингерман А.М., Константинов М.А., Логвинов В.С., Меницкий Д.Н., Ващилло Е.Г. Энтропийно-статистические, спектральные, условно-вероятностные и детерминированные характеристики сердечного ритма в различных функциональных состояниях человека // Успехи физиологических наук. – Т. 19. – 1988. – №1. – С. 1 – 19.

3.  Заболевания вегетативной нервной системы [текст] / А.М. Вейн, Т.Г. Вознесенская, В.Л. Голубев [и др.]. – М.: Медицина, 1991. – 624 с.

4. Grassberger P., Procaccia I., Characterization of strange attractors // Physical Review Letters, 1983. – V. 50. – P. 346 – 349.

5.  Brennan M., Palaniswami M., Kamen P. Do Existing Measures of Poincaré Plot Geometry Reflect Nonlinear Features of Heart Rate Variability? // IEEE transactions on biomedical engineering. – 2001. – V. 48, № 11. – P. 1342 – 1347.