ный показатель составил: 68,1 ± 9,8 г/м². Показатели сократительной функции миокарда при этом снизились: ФВ у больных ПИКС составила в среднем - 42,4 ± 5,1%, в КГ - 63,5 ± 6,9%. Гемодинамические изменения характеризовались тем, что наблюдалась тенденция к увеличению УО, что составило: 80 ± 9 мл, по сравнению с КГ - 70 ± 10 мл. У всех больных ИОТС не увеличивался по сравнению с КГ и составил в среднем 0,33 ± 0,031, в КГ - 0,45 ± 0,044

Выводы: Тенденция к увеличению УО является временем компенсаторным механизмом в процессе постинфарктного ремоделирования. Наблюдаемое снижение ФВ является основным признаком систолической дисфункции. В связи с увеличением ИММ больным в обязательном порядке необходимо рекомендовать лекарственные препараты, влияющие на гипертрофию миокарда ЛЖ: β – адреноблокаторы, ингибиторы АПФ.

ИММУНОЛОГИЧЕСКИЙ МОНИТОРИНГ БАРЬЕРНЫХ СОБСТВЕН ВЕЩЕСТВ КЕРАТИНОЦИТОВ

Рева И.В., Гурбина К.Р., Сингур О.А., Игнатьев С.В., Первов Ю.Ю., Болотная В.Н., Погорелов В.В., Попова К.М., Метёкина И.В., Маслов Д.В.

Биологический смысл воспаления, как эволюционно сложившегося процесса, заключается в ограничении в воспалительной реакции, перераспределение клеток из кровеносного русла в очаг воспаления и усиление выработки провоспалительных цитокинов (Tsuboushi S., 1981). В инициации и регуляции клеточного и гуморального иммунного ответа участвуют макрофаги, посредством презентации антигенов клеткам лимфоидного ряда и вследствие обладания ими мощного фагоцитарного и лимфоцитарного потенциала, наличия в их цитоплазме фагосом, способности секретировать различные компоненты комплемента, а также выработки различных цитокинов. Макрофаг является базисной клеткой, регулирующей посредством выработки цитокинов процессы регенерации, переход от воспалительной реакции и альтерации эпителиального барьера к его восстановлению (Ярелин Л.А., 1996, 1997, 1999). В то же время сформироваться могут макрофаги, в частности, протеазы, могут повреждать окружающие ткани и быть источником вторичных воспалительных изменений, способствуя тем самым хронизации процесса в эпителиальных пластинах (Roncucci L., 1988). Макрофаги влияют на дифференцировку клеток, миграцию, пролиферацию и функции моноцитов, нейтрофилов и лимфоцитов. В очаге острого воспаления в первые часы макрофаги составляют менее 5% инфильтрирующих клеток, значительно уступая по численности гранулоцитам. На второй-третий сутки от начала альтерации, макрофаги становятся доминирующими клеточным пулом инфильтрата, приходя на смену быстро гибнущим гранулоцитам. Миграция моноцитов из кровотока в ткани опосредована экспрессией на моноцитах и на эндотелиозах адгезионных молекул интегрина CD18+ , IL-6, INF- , TNF-a (Ohtsuka Y., 2001). После адгезии к эндотелиальным клеткам и успешного преодоления эндотелиального барьера путём диапедеза и трансэндотелиальной миграции, моноцит под влиянием соответствующих хемотрактантов двигается в направлении участка повреждённого эпителия или очага инфекции. Функцию хемотрактант выполнять компоненты и продукты распада микроорганизмов, в частности, бактериальный LPS, а также продукты деструкции тканей (Пальцев М.А., 1996). Движение клеток в отсутствие такого градиента носит беспорядочный характер и называется «спонтанной миграцией». При связывании LPS/LBP с клеточной формой CD14 миелондных клеток усиливается фагоцитоз грамотрицательных бактерий, формируется клеточный ответ на низкие концентрации LPS. При связывании LPS/LBP с растворимой формой CD14 образуется тройной комплекс, который распознаётся рецепторами эндотелиальных, эпителиальных, дендритных клеток Лангерганса, а затем происходит индукция воспалительного ответа на LPS. Такие реакции носят локальный характер и препятствуют распространению инфекции (Roncucci L., 1988). Связывание комплекса LPS/LBP с CD14 моноцитов может завершиться интерлейкиной LPS без индукции воспалительного процесса.

В раннюю стадию воспаления бактериальный LPS или агент вирусной природы, воздействуя на эндотелиальные клетки, индуцируют секрецию эндотелиальными клетками провоспалительных цитокинов, в частности, IL-1 и TNF-a (Bacon K., 1998). Кроме этого, при повреждении эндотелиального барьера макрофаги, являясь антигенпрезентирующими клетками, воздействуя через рецепторный аппарат иммунокомпетентных клеток, также индуцируют их на секрецию провоспалительных цитокинов, опосредующих запуск специфического и неспецифического иммунного ответов.

Уменьшение числа клеток, исследуемых в периферической крови популяций в острым периоде болезни при различных инфекционных заболеваниях, сопровождающихся поражением и частичным разрушением эндотелиальных пластинок слизистых оболочек и эпителия, не может трактоваться как формирующийся иммунодепрессивный, а должен рассматриваться как варiableнная иммунная недостаточность, вследствие того, что количество иммунокомпетентных клеток увеличивается в местном очаге воспаления. Данный феномен рассматривает...
ривается как перераспределение и активация иммунокомплексов при наличии местного очага воспаления в организме. По мнению Steinman R. (1999), при повреждении тканей и местном воздействии патогенных факторов, регенераторные процессы сопровождаются выраженной инфильтрацией лимфоцитами, плазматическими клетками, поли-, нуклеарами, единичными эозинофилаами.Автором показано, что при наличии патологического очага, в случае необходимости запуска регенерационного процесса, имеет место активация лимфоэпителиальной пластинки лимфоцитов из центральных
органов иммунной системы, проходящих антиген независимую дифференцировку. Миграция иммунных клеток в эпителиальный барьер и на его поверхностность сквозь него играет важную роль в иммунных и воспалительных процессах.
Защитная функция эпителиального барьера во многом определяется состоянием местного иммунитета, взаимодействием клеток иммунной системы прилежащих к эпителиальным пластинкам соединительно-тканых, а также числом, спектром, активностью иммунокомплексов, уровнем секретируемых ими цитокинов и других клеточных медиаторов.

Педагогические науки

О НЕКОТОРЫХ ПРОБЛЕМАХ ПОДГОТОВКИ БУДУЩЕГО ПРАКТИКУЮЩЕГО ВРАЧА
Жижень К.С.
ГОУ СПО РО "Ростовский базовый медицинский колледж"
Ростов-на-Дону, Россия

Повышению качества высшего медицинского образования в последнее время посвящено несметное количество статей и научного, и публицистического плана. Во всем этом многообразии прослеживается сквозная мысль: в клинической медицине диагностические и лечебные технологии стали особенно сложными и дорогостоящими, агрессивными, сопряженными с риском осложнений. Усугубляется положение рыхлыми отношениями, активно культивируемыми в отечественном здравоохранении. Все это настоятельно требуют углубленной модернизации учебно-воспитательного процесса. Однако некоторые проблемы лежат на поверхности. К примеру, качество подготовки будущих врачей очень мало зависит от уровня клинической базы.

Если раньше статус лечебно-профилактических учреждений во многом определялся влиянием кафедральных коллективов соответствующего медицинского университета, то теперь кафедры в большинстве случаев оказались в роли "государств в государстве". Разные системы оплаты труда разведели составы кафедр и коллективы практикующих врачей, а постоянные "платные" палаты и пациентов только усугубили этот разрыв. Стали сокращаться учебные площади кафедр. Эти "отвешенные" главными вами квадратные метры оказались лучшими учреждением для решения каких-то иных производственных задач. Снизился уровень аппаратуроведения и методологического обеспечения учебного процесса. Сегодня большинство, диктуя свои условия, под учебный процесс выделяют далеко не лучшие помещения, которые (значительная часть учебного процесса проходит в осенне-зимнее время) далеки от гигиенических нормативов, не говоря уже о возможности приема пищи. Это неизбежно приводит к росту среди будущих врачей психосоматических заболеваний (в частности, разрыхляют заболеваний нервной системы, психоаналитического тракта, нервно-психической и урогенитальной сферы), к снижению мотивации к обучению. Особенно тяжелое положение у медико-профилактических факультетов. Будущие специалисты санитарно-гигиенического профиля вообще не имеют возможности (вплоть до окончания учебного заведения) серьезно работать в центрах санитаров. Внешне всеми активно отвергаемый репродуктивный подход к обучению, к сожалению, еще не сдал позиции продуктивному. И бич продуктивного обучения - большие группы: 10-14 студентов. В силу этого, полноценный учебный процесс затруднен, а иногда и невозможен, если пациенты - новорожденные, недоношенные дети, тяжелые и инфекционные больные, не говоря уже о "платных". Они недоступны не только студентам, не каждому кафедральному специалисту. Организация малых групп (2-3 человека) упрощается и в проблему часовой нагрузки, и, главное, - кадров. Составы кафедр катастрофически стареют: пре- подают (по возрасту) в лучшем случае отцы и матери, в худшем - дедушки и бабушки. Завязываю же (на фоне рыхлых отношений) молодую смену педагогов заряженной близкой к прожиточному минимуму - дело неблагодарное. Еще одна общая беда подготовки будущих практикующих врачей - физико-математичекий критерий: пациента "добрать" на отдельные системы, функции, реакции и т.д. С учетом подобного монодисциплинарного подхода студенты обучают так, словно он будет работать после окончания учебы не врачом, а анатомом, физиологом, биохимиком, гистологом и т. п. Отчего, почерпнутые из многих теоретических курсов знания зачастую остаются мало востребованными. Молодой врач с трудом может соотнести этот багаж с конкретной реальной заболеваний при выработке собственной стратегии и тактики лечения. В работу лечебно-профилактических учреждений и университетов все активнее внедряются ЭВМ, но те же мульти- медиовые информационные технологии, активный и свободный выход в рабочее время в Ин-