сю. В шиповатом и зернистом слоях пролиферирующие клетки не определяются. При длительности заболевания от 4 до 5 лет, пролиферирующие клетки маркируются как в базальном, так и в шиповатом слое, а при длительности заболевания более 6 лет – маркировка затрагивает клетки всех слоев, включая зернистый. Следует отметить при этом, что в зернистом слое маркируются единичные клетки. Увеличение пролиферативной активности и появление пролиферирующих клеток в поверхностных слоях эпителия свидетельствуют о высоком уровне адаптационно-приспособительных реакций, компенсаторных процессах в ответ на изменение pH среды, а также на действие других повреждающих факторов. При длительности заболевания сахарным диабетом от 6 до 8 лет наивысшая пролиферативная активность соответствует базальному слою, в шиповатом и зернистом слоях активность отсутствует. С увеличением срока давности заболевания свыше 8 лет пролиферативная активность в базальном слое эпителиальной пластинки снижена почти в два раза. При сроках заболевания от 9 до 10 лет пролиферативная активность еще более снижается в базальном слое, а также полностью исчезает в шиповатом слое.

Картина пролиферативных процессов в зависимости от сроков давности заболевания несколько отличается от таковых в различных возрастных группах.

В ранние сроки заболевания во всех возрастных группах пролиферативная активность регистрируется в базальном слое, причем значения ее в сравнительном аспекте более высокие в возрасте до 45 лет. Также наблюдаются клетки с пролиферативной активностью в шиповатом слое, причем мы не наблюдали при ранних сроках заболевания в старших возрастных группах. Исходя из полученных данных, можно сделать заключение, что в эпителиальной пластинке пролиферативные процессы находятся не только в зависимости от давности заболевания, но также от возраста больных сахарным диабетом.

Мы считаем, что в данном случае право-мерно говорить о генераторном потенциале эпителиальной пластиники, который значительно увеличивается на начальных этапах заболевания, а затем снижается почти в 2 раза, при длительности заболевания более 4-5 лет, и падает при длительности заболевания более 6 лет.

Нами отмечено, что явления пролиферативных изменений отличаются у больных сахарным диабетом в различных возрастных группах. В большей степени маркеры гена Ki-67 регистрируются у больных с 30 до 35 лет, на втором месте идет группа больных 36-40 лет, затем следуют больные в возрасте от 41 до 55 лет. На последнем месте находится группа больных в возрасте от 56 до 70 лет. Нами отмечено, что в группе больных сахарным диабетом в возрасте старше 60 лет наблюдалось наряду с общим увеличением пролиферативной активности, явления гиперкератоза в эпителиальной пластинке при сроках заболевания до трех лет.

ЦИТОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ КАК ОЦЕНКА СОСТОЯНИЯ ТКАНЕЙ ПАРОДОНТА У ПРОТЕЗИРУЮЩИХСЯ БОЛЬНЫХ С САХАРНЫМ ДИАБЕТОМ

Перов Ю.Ю., Гурбанов К.Р., Болотная В.Н., Попова К.М., Игнатьев С.А., Погорельский В.В.

Анализ доступной литературы о роли микрорельефов полости рта в патогенезе заболеваний слюнной оболочки при сахарном диабете показал, что обнаружение причин вспышек активности и анализ причин перехода нейтрального состояния в заболевание — главный вопрос в исследовании заболеваний пародонта. Определение степени колонизации микроорганизмами эпителиальной пластиники слюнной оболочки может быть наиболее объективным критерием, по которому можно судить о развитии патологических процессов в слюнной десне у больных с сахарным диабетом.

Цель работы: улучшить методы диагностики стоматологической патологии на основании цитологического анализа слюнной оболочки десны у пациентов с сахарным диабетом. Предложено комплексное стоматологическое обследование 46 мужчин в возрасте от 22 до 74 лет, имеющих сахарный диабет. Для оценки состояния слюнной оболочки в различных возрастных группах использовали определение показателя естественной колонизации десневого эпителия (ПКЭ). Для изучения естественной колонизации брали соскоб со слюнной оболочки десны, фиксировали его, окрашивали по Романовскому-Гимзе и просматривали под микроскопом в различных полях зрения до 100 эпителиальных клеток. Также по общей методике готовили срезы толщиной 5-7 мкм с биоптатов слюнной оболочки десны, залитых в парафин. О естественной колонизации судили по числу агглютированных бактериальных клеток в пересчете на один эпителион. Изучение заселения эпителионов микроорганизмами выявили индивидуальные колебания естественной колонизации эпителиона десны. Это позволило охарактеризовать не только состояние поверхности плоского эпителия, но и эпителиона глубже расположенных слоев. При окрашивании полученных срезов из биоптатов слюнной оболочки стоматологических больных с сахарным диабетом, установлено, что бактериальная флора слюнных оболочек пациентов данной группы заселяет глубже расположенные слоя эпителиальной пластинки, в отличие от протезирующихся больных без эндокринной патологии и пациентов контрольной группы, что существенно снижает барьерные свойства эпителия. Данный способ оценки состояния слюнных обо-
ложек пациентов с сахарным диабетом показал возможность прогнозировать возникновение заболеваний зубов, своевременно предупреждая их появление, а также выявить группу риска по данным цитологического анализа и бактериальной колонизации эпителия для проведения вспомогательной профилактики. При предоставляемых нами методе диагностики, главным критерием оценки состояния слизистой оболочки десны является изменение барьерных функций структурных элементов эпителиальной пластинки и степень колонизации поверхностных или глубоких слоев эпителия. По этому признаку можно косвенно характеризовать и регенераторный потенциал структур слизистой оболочки десны, и состояние иммунного статуса больных сахарным диабетом, а также определять длительность хронического процесса в пародонте.

РОЛЬ СТЕКЛОВИДНОГО ТЕЛА ГЛАЗА ЧЕЛОВЕКА В ГИДРОДИНАМИКЕ ГЛАЗА
Рева Г.В., Абуллин Е.А., Князева Н.В.

Несмотря на большое внимание, уделяемое специалистами вопросам развития структур глаза, они с каждым годом становятся всё более актуальными. В настоящее время наименее изученной составляющей глаза человека является стекловидное тело. Дискуссионными являются вопросы не только развития, но также строения и гистофизиологии стекловидного тела, что существенно влияет на клинические достижения в области офтальмологии. До сих пор нет окончательного решения о наличии и сроках появления заднеэпителиальной мембраны, наиболее важного образования в витреоретинальной границе. В русской литературе распространён термин — “глиалидная мембрана”, а в американской и западноевропейской — “глиалидная поверхность”. Отсутствие конкретных искривляющих морфологических данных объясняет трудности в построении доказательных и искривляющих теорий патогенеза многих заболеваний органа зрения.

Методом иммуногистохимической метки профилирующих клеток на белок гена Ki-67, Фельген-Россиева, Браслав, Романовского-Гимзы, Хуна и Винсента, а также с применением классического метода окраски паррафина срезов гематоксилин-эозином, нами изучена морфология развивающегося стекловидного тела.

Установлено, что в своём развитии стекловидное тело проходит несколько этапов. В ранние сроки эмбриогенеза оно представлено звёздчатыми отростками клеток, формирующимися нежную сеть. Согласно Chollor (1850), стекловидное тело имеет эндодермальное происхождение, Zernow (1902) и Dieberkuhn (1903) считают его производным мозговой мезодермы, листок которой проникает в полость глаза. Tornatola (1950) представил доказательства эктодермального происхождения стекловидного тела, связывая его с образованием с развитием сетчатки. Van Pe (1903) выдвинул, Sylry разработал, Soke и See-feldes (1905), Mann (1928) подтвердили теорию эктодермального происхождения стекловидного тела. Reorslor и Gestner (1967) высказали мнение, что стекловидное тело — аналог мягкой мозговой оболочки, как преформация последней в специфических условиях глаза. Гипотезы, авторы которых пытались связать продукцию витреальных волокон с клеточными элементами, не нашли подтверждения. Трансдуктивная теория Kesslis, теория базальной мембраны Frans, секторальная теория Vensens и Granachter, мезодермальная теория Studnitska рассматривают стекловидное тело как продукт трансдукции, секреции и преформирования эмбриональных витреальных сосудов и межклеточного вещества. По Mann (1928), рост стекловидного тела определяет форму глазного яблока. В настоящее время принята точка зрения о смешанном мезодермально-эктомедермальном происхождении стекловидного тела в противоположность ранее существующим точкам зрения.

Полученные нами данные свидетельствуют о том, что стекловидное тело является производным нейромезенхимы. Морфологические особенности строения витроретинальной границы в этот период указывают на тесные трофические взаимодействия сетчатки и стекловидного тела. С пятой недели эмбриональное стекловидное тело вступает в период васкуляризации и представляет собой структуру, содержащую прорастающие кровеносные сосуды. Этот процесс продолжается по 6-й месяц плодного периода, а затем наступает период инволюции сосудистого стекловидного тела. К 8-му месяцу гиалоидные сосуды запустевают, эндотелий подергивается апоптозу и стекловидное тело приобретает фибриллярную структуру. Нами отмечено, что сложность структурной организации стекловидного тела неодинакова в разных его отделах. Возрастная инволюция стекловидного тела заключается в образовании в нём различной величины полостей, содержащих жидкости. К инволюционным изменениям относят нитчатую деструкцию, проявляющуюся после 20 лет и нарастающую после 40 лет.

СПИСОК ЛИТЕРАТУРЫ:
1. Авербах М.И. Схематический анатомофизиологический очерк глаза. В кн.: Авербах М.И. Офтальмологические очерки. М.-Л., 1940. с. 20-66.