Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,087

Глущенко А.Г., Головкина М.В.

Волноводные структуры широко используются в системах обработки информации различных частотных диапазонов. Особое место занимают структуры с невзаимными свойствами, на основе которых разработаны элементы развязок устройств (вентили, циркуляторы и др.). Для создания этих устройств необходимы гиротропные среды. Наиболее распространенными являются ферриты, диапазон использования которых ограничен СВЧ и КВЧ диапазонами. В данной работе показаны невзаимные свойства волноводной структуры с тонкими пленками сверхпроводника второго рода и диэлектрика с нелинейными параметрами. Показана возможность существования в рассмотренной структуре солитоноподобных импульсов, параметры которых зависят от дисперсионных характеристик волноводной структуры, а также от амплитуды импульсов.

Тонкая пленка сверхпроводника в резистивном состоянии и тонкая пленка диэлектрика с нелинейными параметрами f расположены параллельно узким стенкам прямоугольно волновода. Внешнее магнитное поле В направлено параллельной широким стенкам волновода, транспортный ток в сверхпроводнике параллелен узкой стенке волновода. Рассмотрена Н-волна (с компонентами Hx, Hz, Ey), которая эффективно взаимодействует с вихревой структурой в сверхпроводнике.

Наличие тонкого сверхпроводящего слоя в смешанном состоянии учитывается введением граничных условий:

f,

f

где jy0 - плотность транспортного тока в сверхпроводнике, β - продольное волновое число, σ -проводимость сверхпроводящей пленки, Ф0- квант магнитного потока, η - коэффициент вязкости магнитного вихря. Знаки «+» и «-» соответствуют прямой и обратной волне.

Задача сводится к решению нелинейного интегро - дифференциального уравнения относительно функции E y (z,t)

f,

где ядро интегрального оператора R(z,t) представляет собой обратное преобразование Фурье определяемой аналитическим путем функции R(ω,β):

f

При учетe нелинейности третьего порядка уравнение принимает вид:

f

f

и представляет собой обобщение нелинейного уравнения Шредингера. Решением уравнения является функция f описывающая решетку нелинейных импульсов при f или f (импульсы затемнения) при f 

Длительность импульсов  f

скорость импульсов f

Проведен численный анализ. С ростом амплитуды импульсов их скорость растет, а длительность уменьшается, что характерно для солитонов в безграничных средах. В качестве сверхпроводящей пленки рассмотрены пленки YBa2Cu3O7. Продолжительность импульса t уменьшается с ростом толщины сверхпроводящей пленки, а скорость v имеет максимум при определенной толщине пленки t. При увеличении несущей частоты импульса уменьшается продолжительность импульса и его скорость. При увеличении толщины t также наблюдается существенное уменьшение затухания. Параметрами импульсов в волноводных структурах можно управлять, меняя плотность тока транспорта в пленке и поле подмагничивания. Кроме того, структура обладает невзаимными свойствами для волн, распространяющихся в прямом и обратном направлениях, которые можно реализовать в различных областях частот.

В зависимости от толщины сверхпроводящей пленки импульс может менять свое направление распространения на противоположное, что соответствует изменению знака скорости v. С ростом постоянного внешнего магнитного поля продолжительность импульса t уменьшается, а скорость v достигает максимума при определенном значении Bx0, причем импульс может менять направление распространения.

В волноводной системе с тонкой пленкой сверхпроводника в резистивном состоянии энергия может передаваться импульсу за счет энергии движения решетки вихрей Абрикосова. Возможность усиления электромагнитной волны за счет энергии решетки вихрей Абрикосова была показана в работах [1,2]. Использование в волноводных структурах двухслойных тонких пленок сверхпроводник - диэлектрик типа Керра позволяет формировать нелинейные стационарные импульсы малой продолжительности с высокой скоростью распространения, параметры которых зависят от дисперсионных характеристик волноводной структуры, величины коэффициента нелинейности, а также от амплитуды импульсов Es. В зависимости от величины параметров нелинейной пленки, величины магнитного поля продолжительность нелинейного импульса может достигать порядка 10-12 с, а скорость его распространения порядка 108 м/с.

СПИСОК ЛИТЕРАТУРЫ

  1. Глущенко А.Г., Головкина М.В. Отражение электромагнитной волны слоистой структурой сверхпроводник - диэлектрик. //Письма в ЖТФ. -1998. - Т. 24. - Вып. 1. - С. 9-12.
  2. Glushchenko A.G., Golovkina M.V. Electromagnetic wave propagation in superconductor - dielectric multilayers. //Symposium Proceedings "EMC´98 ROMA". - Rome. - Italy. -1998. International Symposium on Electromagnetic Compatibility "EMC´98 ROMA" Rome. - Italy. - 1998. - V 2. - P. 483-486.