Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,222

THE BANDPASS FILTERING ALGORITHMS FOR IDENTIFICATION OF GAS-TURBINE ENGINES APPROACHING TO THE BOUNDARY OF STABILITY

Kuznetsova T.A. 1 Gubarev E.A. 1 Likhacheva Yu.V. 1
1 Perm State National Research Politechnical University
Работа посвящена проблеме повышения адаптационных свойств газотурбинных авиационных двигателей (ГТД) к внешним и внутренним возмущениям (помехам) на основе расширения возможностей систем автоматического управления (САУ). В качестве возмущений рассматриваются пульсации потока во всасывающем или нагнетательном трубопроводе компрессора, причиной которых может быть приближение к помпажному режиму. Предлагается решение задачи алгоритмического управления предпомпажными режимами работы ГТД, адаптированного к границам его устойчивости. Целью исследования является разработка алгоритмов полосовой фильтрации, позволяющих наделить САУ ГТД функциями обнаружения предсрывных явлений в компрессоре. Характерным признаком предсрывных явлений считается нарастание амплитуды пульсаций давления над рабочим колесом на частотах, кратных роторной. Применяемый метод полосовой фильтрации строится на объединении цифровых фильтров низких (ФНЧ) и высоких частот (ФВЧ). Импульсная характеристика ФВЧ определяется через известную импульсную характеристику ФНЧ методом спектральной инверсии. Полученная передаточная функция полосового (ПФ) второго порядка соответствует устойчивой системе. Синтезированы две схемные реализации ПФ. Апробация разработанных алгоритмов полосовой фильтрации произведена в среде MATLAB. Сравнительный анализ амплитудо-частотных характеристик предложенных реализаций позволил выбрать схему ПФ, обеспечивающую наилучшее качество фильтрации. Рассмотрена реакция модели ПФ на периодический несинусоидальный сигнал, имитирующий экспериментально полученную функцию изменения пульсаций давления в предпомпажном режиме. Как показали результаты модельного эксперимента, применение алгоритмов полосовой фильтрации в составе САУ для идентификации предпомпажных режимов работы компрессора позволяет эффективно выявлять появление пиков пульсаций давления, характеризующих приближение компрессора к границе устойчивости.
The methods for increasing of gas-turbine aircraft engines’ (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and discharge line of the compressor, which may cause the surge, are considered as the interference. The algorithmic solution to the problem of GTE pre-surge modes’ control adapted to stability limits are proposed. The aim of the study is to develop the bandpass filtering algorithms to provide the detection functions of compressor pre-surge mode for ACS GTE. Characteristic feature of pre-surge effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a bandpass filter combining lowpass and highpass digital filters. The impulse response of highpass filter is determined through a known lowpass filter impulse response by spectral inversion. The resulting transfer function of the second order bandpass filter (BPF) corresponds to stable system. The two circuit implementation of BPF are synthesized. Designed bandpass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency characteristics of proposed implementation allows to choose the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in pre-surge mode, was considered. The results of model experiment demonstrated the effectiveness of bandpass filtering algorithms applying as part of ACS to identify pre-surge mode of compressor for detection of pressure fluctuations’ peaks, characterizing the compressors’ approaching to the stability boundary.
gas-turbine engine
stability
automatic control system
identification
pre-surge mode
bandpass filtering
1. Ayficher E., Dzhervis B. Tsifrovaya obrabotka signalov. Prakticheskiy podkhod. M.: Vilyams, 2004, 992 p.
2. Gerasimenko V.P., Animov Yu.A. Obespechenie gazodinamicheskoy ustoychivosti kompressora v usloviyakh periodicheskikh vozmushcheniy potoka // Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2004, no. 7(15), pp. 69–73.
3. Kuznetsova T.A., Gubarev E.A. Otkazoustoychivye algoritmy identifikatsii vkhodnoy informa-tsii bortovoy matematicheskoy modeli v sostave sistemy avtomaticheskogo upravleniya aviatsi-onnogo dvigatelya // Fundamentalnye issledovaniya, 2015, no. 6–1, pp. 39–43.
4. Solodovnikov V.V. Teoriya avtomaticheskogo regulirovaniya. T.1. M.: Mashinostroenie, 1967, 767 p.
5. Hah C., Voges M., Mueller M., Schiffer H.P. Characteristics of Compressor Tip Clearance Flow Instability in Transonic Compressor // Proc. Turbo-Expo Symposium, GT2010-23244, Glasgow, 2010.
6. Owen M. Practical Signal Processing, Cambridge (UK), Cambridge University Press, 2012, 348 p.

Обеспечение отказоустойчивой работы авиационных газотурбинных двигателей (ГТД) – одна из основных задач адаптивных цифровых систем автоматического управления (САУ), эффективность решения которой во многом определяется выбранной методологией идентификации приближения к границе устойчивости [3]. Одним из признаков нарушения устойчивости газовых систем с компрессором, к которым относится ГТД, является наличие пульсаций потока во всасывающем или нагнетательном трубопроводе [2]. Причиной таких колебаний может быть приближение к помпажному режиму, характеризующемуся большими динамическими нагрузками, которые могут привести к разрушению компрессора. Таким образом, актуальной является задача алгоритмического управления предпомпажными режимами работы ГТД, адаптированного к границам его устойчивости. При этом верхняя граница устойчивой работы определяется срывом потока и автоколебаниями в компрессоре, а нижняя – срывом горения в малоэмиссионной камере сгорания. В настоящей работе рассматривается возможность идентификации предсрывных явлений в компрессоре на основе применения полосовых фильтров.

Целью исследования является разработка алгоритмов полосовой фильтрации, позволяющих наделить САУ ГТД функциями обнаружения предсрывных явлений в компрессоре, характеризующих приближение к границе помпажа.

В настоящее время наиболее характерным признаком предсрывных явлений принято считать [5] нарастание амплитуды пульсаций давления над рабочим колесом на частоте f = 0,6·n·z, где n – частота вращения ротора компрессора («роторная частота»), а z – число лопаток в рабочем колесе (очевидно, что f = n·z – «лопаточная частота») (рис. 1).

Таким образом, задача сводится к идентификации появления пиков пульсации давления на указанных частотах, характеризующих приближение к границе устойчивости, что требует расширения возможностей САУ ГТД.

Одним из путей решения задачи является применения алгоритмов полосовой фильтрации. Применяемый в данной работе метод полосовой фильтрации строится на объединении цифровых фильтров низких частот (ФНЧ) и фильтров высоких частот (ФВЧ).

Известно, что основной характеристикой фильтра является его импульсная характеристика (или ядро фильтра). При этом импульсная характеристика ФВЧ, равная k1(t), может быть определена через известную импульсную характеристику ФНЧ, равную k2(t), методом спектральной инверсии [1].

Полученный сигнал пульсаций давления ΔP(t) может быть интерпретирован как наложение высокочастотной ΔP1(t) и низкочастотной ΔP2(t) составляющих:

ΔP(t) = ΔP1(t) + ΔP2(t). (1)

Для выделения низкочастотной составляющей применяется операция свертки:

ΔP2(t) = ΔP(t)·k2(t). (2)

С учетом основного свойства свертки

x(t) = x(t)·δ(t),

где δ(t) – дельта-функция Дирака, получим из (1) и (2) для высокочастотной составляющей сигнала:

ΔP1(t) = ΔP(t) – ΔP2(t) = = ΔP(t)·δ(t) – ΔP(t)·k2(t) = = ΔP(t)·(δ(t) – k2(t)) = ΔP(t)·k1(t). (3)

Таким образом, из (3) следует, что импульсная характеристика ФВЧ равна

k1(t) = δ(t) – k2(t). (4)

Импульсная характеристика полосового фильтра k(t) определяется через свертку:

k(t) = k2(t)·k1(t). (5)

pic_68.tif

Рис. 1. Пульсации давления над рабочим колесом первой ступени при приближении к границе устойчивости во временной и частотной областях

По известной формуле связи между импульсной характеристикой и передаточной функцией полосового фильтра W(p) = L[k(t)] с помощью (4) и (6) определяется передаточная функция ФВЧ, имеющего ту же частоту среза, что и рассматриваемый ФНЧ:

W1(p) = L[k1(t)] = = L[δ(t) – k2(t)] = 1 – W2(p). (6)

В соответствии с (5), передаточная функция полосового фильтра может быть найдена по теореме о свертке:

kuznets01.wmf (7)

При этом ФВЧ и ФНЧ имеют соответственно частоты среза f1 и f2.

Таким образом, по выбранной передаточной функции ФНЧ, для заданной полосы пропускания частот [f1; f2] по формулам (6) и (7) может быть построен полосовой фильтр (ПФ).

Известно, что простейший ФНЧ имеет переходную характеристику:

kuznets02.wmf (8)

По известной формуле связи между переходной и импульсной характеристикой k2(t) = h′(t) в соответствии с (8) может быть найдена импульсная характеристика проектируемого ФНЧ:

kuznets03.wmf (9)

где kuznets04.wmf (Гц) – частота среза ФНЧ и верхняя граница полосы пропускания ПФ.

Из (10) может быть определена передаточная функция проектируемого ФНЧ:

kuznets05.wmf (10)

Полученная W2(p) соответствует апериодическому звену первого порядка.

По формуле (6) определяется передаточная функция проектируемого ФВЧ с частотой среза kuznets06.wmf (Гц), соответствующей нижней границе полосы пропускания ПФ:

kuznets07.wmf (11)

Полученная передаточная функция W1(p) соответствует реальному дифференциальному звену первого порядка.

Согласно (7), (10) и (11) может быть получена результирующая передаточная функция ПФ:

kuznets08.wmf (12)

Полученная передаточная функция ПФ второго порядка соответствует устойчивой системе, поскольку по Ляпунову для устойчивости линейной системы необходимо и достаточно, чтобы вещественные части корней характеристического уравнения kuznets09.wmf были отрицательными, то есть лежали слева от мнимой оси плоскости корней. В нашем случае kuznets10.wmf, kuznets11.wmf. Поскольку f1,2 – частоты, которые всегда выражаются положительными и действительными числами, корни характеристического уравнения, описывающего уравнения свободного движения ПФ, всегда отрицательные и действительные числа.

Существует множество вариантов схемной реализации ПФ. В данной работе для полученной в (12) передаточной функции были синтезированы две структурные схемы рекурсивных фильтров с бесконечной импульсной характеристикой (БИХ) [4], представленные на рис. 2. Первая схема (рис. 2, а) получена по формуле (7) как последовательное соединение фильтров высоких и низких частот. Вторая (рис. 2, б) – как реальное дифференцирующее звено второго порядка, соответствующее результирующей передаточной функции W(p).

Результаты исследования и их обсуждение

Апробация разработанных алгоритмов полосовой фильтрации была произведена в среде MATLAB. Структурные схемы моделей двух реализаций полосового фильтра в Simulink приведены на рис. 3, a, б.

Полученные амплитудно-частотные характеристики kuznets12.wmf (АЧХ) для двух реализаций ПФ, настроенных на полосу пропускания [f1 = 400 Гц; f2 = 600 Гц] (или для угловой частоты – [ω1 = 2512 рад/c; ω2 = 3768 рад/c]), представлены на рис. 4. Форма АЧХ фильтра далека от прямоугольной в связи с неидеальностью реализации фильтра, вносящей искажения в полосе пропускания и неидеально подавляющией сигнал в полосе заграждения.

pic_69.tif

a

pic_70.tif

б

Рис. 2. Структурные схемы реализаций полосового фильтра: a – первая реализация ПФ; б – вторая реализация ПФ

pic_71.tif

a

pic_72.tif

б

Рис. 3. Модель полосового фильтра в Simulink: a – первая реализация ПФ; б – вторая реализация ПФ

pic_73.tif

pic_74.tif

Рис. 4. Амплитудно-частотные характеристики (АЧХ) и затухание двух реализаций полосовых фильтров (верхний график – первая реализация, нижний график – вторая реализация)

Как показал эксперимент, первая реализация ПФ характеризуется худшим качеством АЧХ – максимальный коэффициент передачи в полосе пропускания 0,4, в то время как для второй реализации фильтра этот показатель равен 0,6. Это объясняется специфическими особенностями передающих свойств последовательных соединений звеньев и систем с множественными обратными связями, осуществляющими регулирование по отклонению. В этой связи для дальнейших исследований была выбрана вторая реализация ПФ (рис. 3, б и 4, б).

В ходе модельного эксперимента на вход ПФ подавался периодический несинусоидальный сигнал, имитирующий экспериментально полученную функцию изменения пульсаций давления в предпомпажном режиме (рис. 1) и представляющий суперпозицию гармонических составляющих различной частоты.

Спектры входного (верхний график) и выходного (нижний график) сигнала ПФ представлены на рис. 5. Основной пик пульсаций в предпомпажном режиме приходится на частоту f = 500 Гц, которая является центральной в выбранной полосе пропускания фильтра. Частота f = 200 Гц соответствует роторной частоте, амплитуда пульсаций при которой максимальна и равна ΔP = 0,1 кг/см2, в то время как выделяемой с помощью ПФ частоте f = 500 Гц соответствует вдвое меньшая амплитуда пульсаций ΔP = 0,05 кг/см2, что и обусловливает низкое качество фильтрации.

Выводы

Как показали результаты модельного экспериманта, применение алгоритмов полосовой фильтрации в составе САУ для идентификации предпомпажных режимов работы компрессора достаточно эффективно позволяет выявить появление пиков пульсаций давления, характеризующих приближение к границе устойчивости.

pic_75.tif

pic_76.tif

Рис. 5. Спектры входного и выходного сигнала ПФ

Использованный БИХ фильтр имеет более простую реализацию по сравнению с КИХ фильтрами.

Для улучшения качества ПФ возможно применение оконных sinc-фильтров (например, Хэмминга или Блэкмана), позволяющих увеличить амплитуду сигнала в полосе пропускания и затухание сигнала вне ее [6].