Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

OVERVIEW OF PROJECTS DETONATION ENGINES. PULSE RAMJET ENGINE

Bulat P.V. 1 Prodan N.V. 2
1 SEC «Dynamics» ltd
2 Problem Laboratory «Turbomachine» ltd
The problem of the development of pulse detonation engines. Are the major research centers conduct research on a new generation of engines. The main directions and trends in the design of detonation engines. The main types of engines: pulse, pulse MULTITUBE, with a high frequency pulse oscillator. Show differences in the method of producing thrust than the classic jet engine equipped with a Laval nozzle. Described the concept of the thrust wall and thrust unit. It is shown that the pulse detonation engines improved in the direction of increasing the pulse repetition rate, and this trend has the right to live in the easiest and cheapest of unmanned vehicles, as well as the development of various ejector amplifiers. The basic difficulty in the simulation of the detonation of the turbulent flow using computational packages based on the application of differential turbulence models and the averaging of the Navier-Stokes equations in time.
detonation engine
pulse detonation engine
1. Bulat P.V., Zasuhin O.N., Prodan N.V. Istorija jeksperimental’nyh issledovanij donnogo davlenija // Fundamental’nye issledovanija. 2011. no. 12 (3). pp. 670–674.
2. Bulat P.V., Zasuhin O.N., Prodan N.V. Kolebanija donnogo davlenija // Fundamental’nye issledovanija. 2012. no. 3. pp. 204–207.
3. Bulat P.V., Zasuhin O.N., Prodan N.V.. Osobennosti primenenija modelej turbulentnosti pri raschete techenij v sverhzvukovyh traktah perspektivnyh vozdushno-reaktivnyh dvigatelej // Dvigatel’. 2012. no. 1. pp. 20–23.
4. Bulat P.V., Zasuhin O.N., Uskov V.N. O klassifikacii rezhimov techenija v kanale s vnezapnym rasshireniem // Teplofizika i Ajeromehanika. 2012. no. 2. pp. 209–222.
5. Bulat P.V., Prodan N.V. O nizkochastotnyh rashodnyh kolebanijah donnogo davlenija // Fundamental’nye issledovanija. 2013. no. 4 (3). pp. 545–549.
6. Larionov S. Ju., Nechaev Ju.N., Mohov A. A. Issledovanie i analiz «holodnyh» produvok tjagovogo modulja vysokochastotnogo pul’sirujushhego detonacionnogo dvigatelja // Vestnik MAI. T.14. no. 4 M.: Izd-vo MAI-Print, 2007, pp. 36–42.
7. Tarasov A.I., Shhipakov V.A. Perspektivy ispol’zovanija pul’sirujushhih detonacionnyh tehnologij v turboreaktivnyh dvigatelja. OAO «NPO «Saturn» NTC im. A.Ljul’ki, Moskva, Rossija. Moskovskiĭ aviacionnyĭ institut (GTU), Moskva, Rossija. ISSN 1727-7337. Aviacionno-kosmicheskaja tehnika i tehnologija, 2011, no. 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 – проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

pic_5.tif

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 – Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами – передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу – дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД – цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД – неоспоримое его достоинство. Как показывает анализ имеющихся публикаций [7, 6], несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

– низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

– высокие тепловые и вибрационные нагрузки.

pic_6.tif

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 – Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления [1], в частности, возможных низкочастотных колебаний [2, 4, 5] в донной области между трубами.

pic_7.tif

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 – ИДД с высокочастотным резонатором. Существует и альтернативное направление – широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ [6]. Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера [3]. Все современные модели турбулентности основаны на осреднении уравнений Навье–Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье–Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

pic_8.tif

Рис. 4. Схема ИДД с высокочастотным резонатором

pic_9.tif

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС – сверхзвуковая струя; УВ – ударная волна; Ф – фокус резонатора; ДВ – детонационная волна; ВР – волна разрежения; ОУВ – отраженная ударная волна

Выводы

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.