Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,674

THE INFLUENCE OF ALUMINIUM AND MAGNESIUM CONCENTRATION IN SOLUTION ON CRYSTALLISATION OF GYDROXYALUMINATE OF MAGNESIUM

Mironycheva T.S. 1 Mikheeva L.A. 1 Brynskih G.T. 1 Enikeeva L.F. 1 Terehina N.V. 1
1 International Relations Department Ulyanovsk State University
Upon receipt gidroksoalyuminata magnesium present in the original solution of chloride ions. In the process of forming a crystalline structure can be adsorbed chloride ions doped crystals gidroksoalyuminata magnesium. The aim was to establish the dependence of the formation of the crystalline structure and the impurity adsorption chloride ion concentration of samples MHA stock solutions of aluminum and magnesium. In order to establish these laws have been used atomic force microscopy and argentometry. Found that the distribution of crystal grains in samples with initial solution concentration ratio 1:0,67 and 1:0,78 almost symmetrically shift towards larger grain size was Δd = 0,8 nm and Δd = 0,7 nm; a downward –Δd = 0,4 nm and –Δd = 0,3 nm, respectively. These samples have a maximum grain size distribution on the surface of the crystals and characterized by a chloride ion content of 0.01 %.
gidroksoalyuminat magnesium concentration ratio of the initial solutions
argentometry
a scanning probe microscope «Solver P47 – Pro»
semi-contact scanning method
the size of the crystals
approximation
1. Andrievskij P.A. Razmernyj jeffekt v nanokristallicheskih materialah: mehanicheskie i fizicheskie svojstva Fizika metallov i metallovedenie,2000, Vol. 89, no 1, pp. 91–112.
2. Vasil’ev Ju. V. Sovremennye antacidnye preparaty v gastrojenterologicheskoj praktike Lechashhij Vrach, 2004, no 4, pp. 35–37.
3. Gosudarstvennaja Farmakopeja Rossijskoj Federacii, Moscow, Izdatel’stvo «Nauchnyj centr jekspertizy sredstv medicinskogo primenenija», XII izdanie (1 chast’), 2008, 704 p.
4. Dzhonson N.L. Statistika i planirovanie jeksperimenta v tehnike i nauke. Metody obrabotki dannyh (translation from English). Moscow, Mir,1980, pp. 540.
5. Eliseev A. A. Issledovanie processov formirovanija sloistoj struktury v processe kristallizacii sloistyh dvojnyh gidroksidov Vestnik VGTU. Ser. Materialovedenie, 2000, Vol. 18, no3, pp. 6–10.
6. Isupov V.P. Ispol’zovanie interkaljacionnyh soedinenij gidroksi-da aljuminija dlja sinteza nanofaznyh system Zhurnal strukturnoj himii,1998, no3. pp. 454–459.
7. Kapustin A.E. Struktura i osnovnye svojstva sloistyh dvojnyh gidroksidov Izvestija vuzov. Himija i him. tehnologija,1992. Vol. 35, no. 7, pp. 40–43.
8. Lukashin A.V. Sintez funkcional’nyh nanomaterialov s ispol’zovaniem sloistyh dvojnyh gidroksidov Tezisy II Rossijskogo seminara:Nelinejnye processy i problemy samoorganizacii v sovremennom materialovedenii, Voronezh, 1999. pp. 71.
9. Suzdalev I. P., Suzdalev P. I. Nanoklastery i nanoklasternye sistemy Uspehi Himii, 2001, Vol. 70, no 3. pp. 203–240.
10. Summ B.D., Ivanova N.I. Ob#ekty i metody kolloidnoj himii v nanohimii Uspehi himii., 2000. Vol. 69, no. 11, pp. 995–1008.
11. Husnutdinov V.R., Isupov V.P. Mehanohimicheskij sintez gidro-karbonatnoj formy sloistyh gidroksidov magnija-aljumini Neorganicheskie materialy, 2008, vol. 44, no. 3. pp. 315–319.
12. Lukashin A.V., Tretyakov Y.D. Use of layered double hydroxides as a new route to prepare nanocomposite materials with controlled nanostructures ̶ Proc. IV Steinfurter-Keramic-Seminar, Dec. 6–9, Steinfurt, Germany, 2000, Steinfurt, 2000, pp. 25.

При лечении заболеваний верхних отделов пищеварительного тракта весьма эффективно применение невсасывающихся антацидных препаратов на основе химически связанных гидроксидов магния и алюминия, так как терапевтический эффект достигается меньшей дозой лекарственного средства за счет высокой скорости нейтрализации двойным гидроксидом [2]. Данные препараты позволяют уменьшить дневную дозу лекарственного вещества в 2–3 раза. К ним относится гидроксоалюминат магния Mg6Al2(OH)18∙4,5H2O (ГАМ) из класса слоистых двойных гидроксидов (СДГ) гидроталькитного ряда. Преимущественным методом синтеза слоистых двойных гидроксидов является их соосаждение из растворов солей Ме2+ и Ме3+ щелочами при определенном уровне рН [1, 4, 5, 6, 7]. Скорость образования центров кристаллизации, скорость роста кристаллов и их анионообменные характеристики при соосаждении зависят от степени пересыщения раствора [8, 10, 11]. В исходном растворе при получении ГАМ присутствует хлорид-ион. Его наличие в конечном продукте нежелательно, так как хлорид и гидроксид-ионы характеризуются близкими значениями констант интеркаляции в межслоевое пространство СДГ [9, 12]. Нами было высказано предположение о том, что изменение количества воды при осаждении за счет уменьшения концентрации осадителя влияет на кристаллизацию осадков и адсорбцию примесных хлорид-ионов кристаллами ГАМ.

Целью данной работы явилось изучение формирования кристаллической структуры и адсорбции примесных хлорид-ионов образцами ГАМ в зависимости от концентрации исходных растворов алюминия и магния.

Материал и методы исследования

Синтез гидрокосалюмината магния (ГАМ) формулы Mg6Al2(OH)18×4,5H2O происходил в соответствии со следующими уравнениями реакции:

2Al + 2NaOH + 6H2O→2Na[Al(OH)4] + 3H2↑ (1)

6MgCl2 + 2Na[Al(OH)4] + 10NaOH + 4,5H2O→Mg6Al2(OH)18×4,5H2O + 12NaCl (2)

При получении каждого образца изменялось соотношение концентраций ионов алюминия и магния за счет изменения концентрации раствора-осадителя (раствора хлорида магния), табл. 1. Значение рН оставляли постоянным, равным 9 ± 0,1 [6,7].

Таблица 1

Нумерация образцов ГАМ в зависимости от содержания воды в исходной суспензии

Номера образцов ГАМ

Концентрации алюминатного раствора и хлорида магния соответственно

Соотношение концентраций алюминатного раствора и хлорида магния

Общий объем суспензий реагентов, мл

Mg6 Al2 (OH)18 (1)

0,01 М – 0,01 М

1:1

685,14

Mg6 Al2 (OH)18 (2)

0,01 М – 0,0078 М

1:0,78

799,33

Mg6 Al2 (OH)18 (3)

0,01 М – 0,0067 М

1:0,67

913,52

Mg6 Al2 (OH)18 (4)

0,01 М – 0,0059 М

1:0,59

1027,71

Mg6 Al2 (OH)18 (5)

0,01 М – 0,0052 М

1:0,52

1141,90

В ходе эксперимента к полученному по уравнению (1) раствору алюмината натрия медленно приливали раствор хлорида магния заданной концентрации. Смесь термостатировали при 100 °С в течение 2 часов, перемешивая магнитной мешалкой на протяжении всего времени синтеза и постоянном значении рН = 9 ± 0,1. Получившуюся в процессе реакции (2) белую взвесь фильтровали с помощью вакуумного насоса. Далее полученный осадок разделялся, к одной части добавляли дистиллированную воду, нагревали до температуры 80 °С, постоянно перемешивая магнитной мешалкой. Другую часть осадка заливали дистиллированной водой с температурой 25 ± 1 °С, постоянно перемешивая магнитной мешалкой. После этого обе части осадка фильтровали с помощь вакуумного насоса. Данную процедуру повторяли 5 раз, после промывания осадки сушили при температуре 110 °С в сушильном шкафу до постоянной массы. После промывания все образцы исследовались на содержание хлорид-ионов методом аргентометрии в трех параллельных определениях [3].

Eqn247.wmf

где 0,003545 – титр хлорид-иона, г/мл; V – объём раствора аммония роданида, пошедший на титрование исследуемой пробы, мл; Vк.о – объём раствора аммония роданида, пошедший на титрование контрольного опыта, мл; Кп – коэффициент поправки раствора аммония роданида; 200 – объём мерной колбы, мл; 50 – объём аликвоты, мл; 1000 – коэффициент пропорциональности; 1,0 – количество субстанции, в котором определяют содержание хлорид-иона, г; а – навеска субстанции, г.

Микроскопические исследования полученных осадков гидроксоалюмината магния проводили методом атомно-силовой микроскопии. АСМ-изображения получены с помощью сканирующего зондового микроскопа «Solver P47-Pro» фирмы NT-MDT (Россия, г. Зеленоград) в полуконтактном режиме на воздухе при температуре 25 ± 1 °С. Применяли кантилеверы NSG20 (длина 90 ± 5 мкм, резонансная частота – 260–630 кГц, радиус кривизны зонда 20 нм). Поля сканирования составили максимум 10×10 нм при перепаде высот рельефа не более 1нм. Чувствительность зонда и точность сканера дали возможность получения изображений поверхности с латеральным разрешением до 10 нм и вертикальным – до 5 нм. Изучение поверхности образцов гидроксоалюмината магния проводили в двух режимах: топографии и фазового контраста. В режиме топографии фиксировали рельеф поверхности. Режим фазового контраста позволяет распознать области, отличающиеся по химическому составу, адгезионным и упругим свойствам. Обработка полученных данных осуществлялась с помощью программного обеспечения FemtoScan Online.

Результаты исследования и их обсуждение

В начале определяли содержание количества хлорид-иона в образцах до промывания, оно составило ~ 24,78 %. После первой отмывки при температуре 25 °С содержание хлорид-иона в образцах составило ~20,12 %, а в образцах, отмытых при 80 °С, ‒ почти в 2 раза меньше, около 11,13 %. Дальнейшие исследования образцов на содержание хлорид-иона показали, что в отмываемых при комнатной температуре осадках содержание хлора даже после пятой отмывки остается велико ~ 11 %. Это происходит независимо от соотношения концентраций исходных растворов. Поэтому данные образцы не подвергали дальнейшим испытаниям. В осадках, отмываемых при 80 °С, после 3-го промывания уровень содержания хлорид-иона опустился до 0,61 %. После 5-го промывания образцы (2) и (3) характеризуются содержанием хлорид-иона на уровне 0,01 %, что соответствует ГФ, XII, ч.1 [11]. Образцы (1), (4) и (5) содержат хлорид-ион около 0,1 %. Далее образцы, отмытые при 80 °С, подвергали микроскопическому исследованию.

АСМ-изображения показали, что все образцы имеют поликристаллическую структуру. Поверхность представлена зернами круглой формы. Зерна равномерно покрывали поверхность подложки. Для образцов (1), (2) и (3) зерна имели правильную круглую форму, для образцов (4) и (5) размер и форма зерен существенно отличалась.

С целью исследования распределения размеров зерен на поверхности образца была произведена обработка полученных АСМ-изображений с помощью программы Image Analysis. Полученные данные представили собой результат наложения функций распределения зерен, имеющих различные размеры. Для зерен характерно нормальное (гауссово) распределение по поверхности. С целью определения размеров зерен проводилась аппроксимация полученных данных функцией нормального распределения по формуле: [4].

Eqn248.wmf

где x – поверхностная координата; d – размер зерна; σ – дисперсия размеров зерен. Результаты аппроксимации представлены в табл. 2.

Таблица 2

Результаты аппроксимации гистограмм распределения зерен по поверхности образцов

Образец (1)

Образец (3)

Образец (5)

№ п/п

d, нм

σ, нм

№ п/п

d, нм

σ, нм

№ п/п

d, нм

σ, нм

1

3,5

11

1

2,1

8

1

1,5

3

2

3,1

10

2

2,5

7

2

1,7

2

3

3,9

14

3

1,8

7

3

1,2

2

4

4,2

13

4

2,2

8

4

1,5

3

5

3,8

10

5

2,5

7

5

1,6

2

Наименьшее значение размера зерен имел образец (5). Размер кристаллитов составил ~ 1,5 нм (рис. 3). Этот образец характеризовался наименьшим разбросом размеров зерен по поверхности (4–6 нм) из всех исследованных образцов. Дисперсия размеров зерен в пределах каждого статистического ансамбля минимальна по сравнению с образцами (1) и (3) составляет 5–8 нм. Это говорит о том, что при соотношении молярных концентраций исходных растворов алюмината натрия и хлорида магния 1:0,59 и 1:0,52 образуются объемистые, аморфные, гелеобразные осадки с развитой поверхностью. Вероятно, это связано с тем, что ГАМ имеет очень низкую растворимость (~10–34), степень пересыщения исходного раствора после смешения алюмината натрия и хлорида магния достигается сразу, при прибавлении малых количеств осадителя – хлорида магния. В этих условиях формируются коллоидные частицы с размером ~ 10–6–10–7. При их коагуляции получаются студенистые аморфные осадки с развитой поверхностью. Такие осадки способны адсорбировать примеси из раствора, что подтверждается данными аргентометрии.

Кристаллы ГАМ, сформированные из образца (1), имели более высокое значение наиболее вероятного размера зерна (3,1 ± 1,1 нм). Для данного образца распределение размеров зерен на поверхности существенно несимметрично. Наблюдался более значительный сдвиг функции распределения относительно наиболее вероятного размера в сторону увеличения размеров зерен (∆d = 1,1 нм) по сравнению со сдвигом в сторону меньших размеров (∆d = 0,4 нм). Вероятно, это связано с соотношением исходных растворов и временем термостатирования. Для получения более упорядоченной структуры при данном соотношении требуется, вероятно, более продолжительная выдержка в маточном растворе, так как на поверхности образовавшихся кристаллов происходит сорбция примесных ионов по данным аргентометрии. При достаточном выдерживании в маточном растворе совершенствуется структура кристаллов, примесные ионы десорбируются и переходят в раствор, окклюдированные молекулы растворителя высвобождаются из осадка.

Распределение зерен для образцов (2) и (3) оказалось практически симметрично относительно значения наиболее вероятного размера зерна (рис. 1), при этом сдвиг в сторону увеличения размеров зерен составил ∆d = 0,8 нм и ∆d = 0,7 нм, а в сторону уменьшения –∆d = 0,4 нм и –∆d = 0,3 нм соответственно.

Образцы (2) и (3) имеют значение размера зерен, равное ~2,27 нм и ~2,22 нм соответственно, и наибольший разброс размеров зерен по поверхности. Это свидетельствует о том, что при соотношении концентраций исходных растворов алюминия и магния 1:0,78 и 1:0,67 формируется структура кристаллов, обладающая оптимальными анионообменными характеристиками.

Выводы

Результаты аргентометрии и атомно-силовой микроскопии подтвердили предположение о том, что соотношение концентрации исходных растворов алюминия и магния влияет на размер и анионообменные характеристики кристаллов ГАМ. Образец, полученный при минимальной концентрации раствора-осадителя, имеет наименьшее значение вероятного размера зерен. Для этого образца характерен наименьший разброс размеров зерен по поверхности (4–6 нм) из всех исследованных образцов. Содержание хлорид-иона в образцах (4) и (5) составило 0,1 %. Кристаллы ГАМ, сформированные при максимальной концентрации раствора-осадителя, имеют более высокое значение наиболее вероятного размера зерна (3,1 ± 1,1 нм). Для данного образца распределение размеров зерен на поверхности несимметрично. Содержание хлорид-иона в образце (1) составляет 0,1 %. Распределение зерен для образцов с соотношением концентраций исходных растворов 1:0,67 и 1:0,78 практически симметрично, сдвиг в сторону увеличения размеров зерен составил ∆d = 0,8 нм и ∆d = 0,7 нм, а в сторону уменьшения –∆d = 0,4 нм и –∆d = 0,3 нм соответственно. Данные образцы имеют наибольший разброс размеров зерен по поверхности и характеризуются содержанием хлорид-иона на уровне 0,01 %, что соответствует ГФ, XII, ч.1.

Рецензенты:

Давыдова О.А., д.х.н., профессор кафедры химии, ФГБОУ ВПО «Ульяновский государственный технический университет», г. Ульяновск;

Климов Е.С., д.х.н., профессор, заведующий кафедрой химии, ФГБОУ ВПО «Ульяновский государственный технический университет», г. Ульяновск.

Работа поступила в редакцию 01.08.2013.