Scientific journal
Fundamental research
ISSN 1812-7339
"Перечень" ВАК
ИФ РИНЦ = 1,222

NORADRENALINE RESISTANCE IN ADIPOCYTES OF MICE WITH OBESITY AND TYPE 2 DIABETES

Turovsky E.A. 1 Turovskaya M.V. 1 Tolmacheva A.V. 1 Dolgacheva L.P. 1 Zinchenko V.P. 1 Dynnik V.V. 1, 2
1 Institute of Cell Biophysics
2 Institute of Theoretical and Experimental Biophysics
Исследование проведено на культивируемых адипоцитах белой жировой ткани мышей. Преадипоциты были выделены у здоровых животных и животных с ожирением и диабетом 2-го типа. С помощью окрашивания жировых пулов красителем Oil red показано, что в клетках нормальных животных на 3–9 день культивирования в присутствии глюкозы происходит формирование пулов триглицеридов. В адипоцитах из животных с диабетом 2-го типа формирование пулов триглицеридов не наблюдается. Культивирование последних в тех же условиях, но с добавлением 1 мкМ пальмитоил-карнитина приводило к образованию жировых капель в клетках. Амплитуда Са2+-ответа адипоцитов, выделенных из тучных животных, на главный активатор липолиза норадреналин была гораздо ниже по сравнению с контрольными животными. Са2+-ответ на норадреналин адипоцитов из мышей с диабетом 2-го типа практически отсутствовал. Культивирование в присутствии 100 нМ пальмитоил-карнитина приводило к восстановлению Са2+-ответов в адипоцитах, полученных из тучных животных и животных с диабетом 2-го типа.
The study was carried out in cultured mouse adipocytes of white adipose tissue. Preadipocytes were isolated from healthy animals and mice with obesity and type 2 Diabetes. Using an Oil red staining we show that the triacylglycerol pools were formed on 3–9 day in vitro over a glucose in adipocytes from healthy mice. The triacylglycerol pools are not observed in cultured adipocytes for mice with type 2 Diabetes. Addition in the incubation medium of 1 µM palmitoyl carnitine initiated the triacylglycerol pools in cultured adipocytes for mice with type 2 Diabetes. The amplitude of the Са2+-response on noradrenaline was much lower in adipocytes from obese mice in comparison with control animals. Addition in the incubation medium of 100 nM palmitoyl carnitine restored of the Са2+-responses on noradrenaline in adipocytes (9DIV) which were isolated from mice with obesity and type 2 Diabetes.
adipocytes
norepinephrine
Са2+
II type diabet
palmitoil carnitine
pool of triglyceride
1. Brooks B., Arch J.R.S., Newsholme E.A. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. // FEBS Lett. 1982. Vol. 146. рр. 327–330.
2. Clark H., Carling D., Saggerson D. Covalent activation of heart AMPactivated protein kinase in response to physiological concentrations of long-chain fatty acids. // Eur. J. Biochem. 2004. Vol. 271. рр. 2215–2224.
3. Edens N.K., Leibel R.L., Hirsch J. Mechanism of free fatty acid reesterification in human adipocytes in vitro // J. Lipid Res. 1990. Vol. 31. рр. 1423–1431.
4. El-Hayek R., Valdivia C., Valdivia H. H., Hogan K., Coronado R. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by palmitoyl carnitine // Biophys J. 1993. Vol. 65, no. 2. рр. 779–789.
5. Fediuc S., Gaidhu M.P., Ceddia R.B. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells // J. Lipid Res. 2006. Vol. 47. рр. 412–420.
6. Kurth-Kraczek E.J., Hirshman M.F., Goodyear L.J., Winder W.W. AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle // Diabetes 1999. Vol. 48, no. 5. рр. 1667–1671.
7. Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome // Pharmacological Research 2006. Vol. 53. pp. 482–491.
8. Dumonteil E., Barré H., Meissner G. Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2 + release channel // J Physiol. 1994. Vol. 479, no. 1. pp. 29–39.
9. Piwkowska A., Rogacka D., Angielski S., Jankowski M. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes. // Biochem Biophys Res Commun. 2012. Vol. 428, no. 1. pp. 167–172.
10. Rosen E.D., Spiegelman B.M. Adipocytes as regulators of energy balance and glucose homeostasis // Nature. 2006. Vol. 444. pp. 847–853.
11. Tavernier G., Jimenez M., Giacobino J. P., Hulo N., Lafontan M., Muzzin P., Langin D. Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice // Mol Pharmacol. 2005. Vol. 68. pp. 793–799.
12. Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat // Acta Physiol. Scand. 2005.Vol. 184. pp. 285–293.
13. Turovsky E.A., Turovskaya M.V., Berezhnov A.V., Tolmacheva A.V., Kaimachnikov N.P., Dolgacheva L.P., Zinchenko V.P., Maevskii E.I., Dynnik V.V. Convergence of Ca2+-signaling pathways in adipocytes. The role of L-arginine and protein kinase G in generation of transient and periodic Ca2+-signals // Biochemistry (Moscow). 2012. Vol. 6, № 1. pp. 35–44.
14. Watt M.J., Steinberg G.R., Chen Z.P., Kemp B.E., Febbraio M.A. Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. // J. Physiol. 2006. Vol. 574. pp. 139–147
15. Weber J.M., Reidy S.P. Extending food deprivation reverses the short-term lipolytic response to fasting: role of the triacylglycerol/fatty acid cycle // J Exp Biol. 2012. Vol. 215, no. 9. pp. 1484–1490.
16. Yang J., Holman G.D. Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes // J. Biol. Chem. 2005. Vol. 280. pp. 4070–4078.

Белая жировая ткань играет главную роль в поддержании энергетического гомеостаза организма при голодании и физической нагрузке за счет липолиза запасенных триглицеридов. В результате липолиза происходит расщепление триглицеридов и высвобождение жирных кислот и глицерола. Эволюционно этот процесс обеспечивает выживание в условиях длительного отсутствия пищи. Жировая ткань является важным метаболическим органом, который играет решающую роль в инсулиновой чувствительности и энергетическом гомеостазе всего организма [10]. Жировые клетки секретируют несколько типов адипокинов, которые регулируют физиологические процессы во всем организме (включая метаболизм глюкозы, аппетит, воспалительные ответы, ангиогенез, давление и репродуктивную функцию). При ожирении наблюдаются нарушения в экспрессии адипокинов и утилизации глюкозы и липидов, поступающих из пищи, что способствует развитию гипергликемии, гиперлипидемии, инсулиновой резистентности и хроническому воспалению [12]. Таким образом, дисфункция белой жировой ткани при ожирении является важным фактором в патогенезе диабета 2-го типа (D2Т) и других метаболических болезней. Два противоположных процесса, липогенез и липолиз, участвуют в энергетическом гомеостазе. В результате липогенеза клетка запасает триглицериды. Длинноцепочечные неэтерифицированные жирные кислоты (предшественники триглицеридов) образуются:

1) в результате гидролиза липопротеинов плазмы;

2) за счет синтеза de novo в адипоцитах;

3) за счет реутилизации образовавшихся свободных жирных кислот в результате липолиза [1; 3; 15].

Другим предшественником триглицеридов является глицерол 3-фосфат. Глицерол 3-фосфат образуется в основном из глюкозы, которая поступает в адипоциты с помощью инсулин-стимулированного транспортера (GLUT4). Симпатическая нервная система и нейротрансмиттер норадреналин (НА) играют важную роль в регуляции липолиза в белой жировой ткани [11]. В данной работе исследована интенсивность липогенеза и чувствительность к норадреналину культивируемых адипоцитов белой жировой ткани, выделенных у животных с ожирением и диабетом 2-го типа.

Материалы и методы исследования

Для индукции ожирения у грызунов использовали диету с высоким содержанием жира (20 г жира на 100 г корма, 7,74 кДж/г). Контрольных животных содержали на стандартной лабораторной диете (10 г жира на 100 г корма, 3,29 кДж/г). Для быстрого развития диабета 2-го типа (D2Т), характеризующегося инсулиновой резистентностью, животным вводили внутрибрюшинно стрептозотацин для подавления β-клеток поджелудочной железы (STZ, 50−100 мг/кг). Животных использовали в эксперименте спустя 2–3 недели после введения STZ. Состояние животных характеризовалось снижением концентрации инсулина на 20–30 % в сравнении с контролем, и 2–3-кратным повышением концентрации глюкозы, жирных кислот и триглицеридов, а также увеличением TNFα и CRP на 30–40 %. В экспериментах использовали первичную культуру белых адипоцитов мыши на 9 день культивирования (9 DIV), полученную из мезенхимальной фракции стволовых клеток эпидидимального жирового депо в соответствии с общепринятой методикой [13]. Для изучения накопления жировых включений белыми адипоцитами производили окраску клеток с помощью зонда Oil Red (Fluka). После промывки клеточной культуры белых адипоцитов фосфатным буфером (PBS) производили фиксацию клеток 10 % раствором формальдегида в течение 1 часа. Далее клетки трижды отмывали PBS, добавляли Oil Red и в течение 1 часа инкубировали при 37 °С. После чего зонд отмывали и культура клеток высушивалась в течение 15–20 минут. Измерение динамики цитозольного кальция ([Ca2+]i) проводили с помощью системы анализа изображений «Cell observer» (Carl Zeiss, Германия), на базе моторизованного микроскопа Axiovert 200M с высокоскоростной черно-белой CCD-камерой AxioCam HSm. Источником света служила ртутная лампа НВО 100. Возбуждение флуоресценции Fura-2 проводили при двух длинах волн (340 и 387 нм) с использованием запирающих светофильтров BP 340/30 и BP 387/15.

Результаты исследования и их обсуждение

Липогенез. К предшественникам триглицеридов, запасаемых в жировых депо адипоцитов, относятся длинноцепочечные неэстерифицированные (свободные) жирные кислоты и глицерол-3-фосфат. Внутриклеточный глицерол-3-фосфат образуется в основном из глюкозы, транспортируемой в адипоциты переносчиком GLUT-4, активность которого инициируется инсулином. На рис. 1 (верхний ряд) представлены культуры адипоцитов (3 DIV, 5 DIV, 9 DIV), выделенные у мышей с D2Т. Адипоциты на 9 день культивирования являются дифференцированными клетками. Окрашивание жировых пулов адипоцитов красителем (Oil red) показало, что в культуре, полученной из животных с диабетом 2-го типа, не происходит формирование триглицеридных пулов при использовании глюкозы в качестве субстрата (рис. 1, верхний ряд). Длинноцепочечная кислота (16:0) пальмитоил-карнитин относится к предшественникам триглицеридов, транспортируемых в клетку мембранным переносчиком. На рис. 1 (нижний ряд) показано, что культивирование адипоцитов в присутствии 10 мМ глюкозы и 100 нМ пальмитоил-карнитина инициировало образование и накопление жировых капель в клетках.

Изменение [Ca2+]i под действием норадреналина. Симпатическая нервная система и нейротрансмиттер норадреналин (НА) играют важную роль в процессе липолиза в белой жировой ткани [11]. Воздействие НА на функции жировой клетки является комплексным и активирует не только различные подтипы адренорецепторов, но и различные системы трансдукции сигнала. Считается, что НА стимулирует липолиз через активацию β-адренорецепторов, сопряженных со стимуляцией аденилатциклазы, синтезом сАМР, активацией протеинкиназы А, ключевых липаз ATGL (жировая триглицеридлипаза) и HSL (гормонально чувствительная липаза), и фосфорилированием перилипина (белка, расположенного на поверхности жировых депо и защищающего триглицериды от липолиза). Однако стимуляция липолиза норадреналином сохраняется и у мышей с нокаутом β1/β2/β3-адренорецепторов [11] и, возможно, реализуется с участием α-адренорецепторов, активация которых может сопровождаться изменением концентрации Са2+. Изменение [Ca2+]i под действием норадреналина в адипоцитах (9DIV) показано на рис. 2. На рис. 2 представлены Са2+-ответы адипоцитов, выделенных из разных животных: в норме (1), тучных (2) и с диабетом 2-го типа (3). Амплитуда Са2 + -ответа на норадреналин у тучных животных ниже в (4–12) раз по сравнению с контрольными животными, а у мышей с D2T Са2+-ответ практически отсутствует даже для очень высоких концентраций НА (рис. 2,а).

pic_22.tif

Рис. 1. Жировые пулы культивируемых адипоцитов мышей с D2T в разные сроки культивирования (3DIV, 5DIV, 9DIV). Окраска Oil red. Верхний ряд – культивирование клеток с 10 мМ глюкозы. Нижний ряд – культивирование клеток с 10 мМ глюкозы и 100 нМ пальмитоил-карнитина

Известно, что пальмитоил-карнитин и пальмитоил-КоА инициируют мобилизацию Са2+ из саркоплазматического ретикулума в скелетных мышцах [4]. Чтобы показать действие пальмитоил-карнитина на Са2+-ответ адипоцитов при аппликации НА, адипоциты здоровых и больных животных, начиная с 3-го дня, культивировали в присутствии 100 нМ пальмитоил-карнитина. Как следует из рис. 3, присутствие пальмитоил-карнитина в среде культивирования привело к восстановлению Са2+-ответа на НА в адипоцитах (9DIV), полученных из тучных животных и животных с Д2Т.

pic_23.wmf

Рис. 2. Изменение [Ca2 + ]i под действием 100мкМ норадреналина в адипоцитах, выделенных у мышей в норме (1), с ожирением (2) и Д2Т (3)

pic_24.wmf

Рис. 3. Изменение [Ca2 + ]i под действием 100мкМ норадреналина в адипоцитах, выделенных у мышей в норме (1), с ожирением (2) и Д2Т (3) при добавлении в среду культивирования 100 нМ пальмитоил-карнитина

Таким образом, полученные данные свидетельствуют в пользу того, что в условиях D2T наряду с инсулиновой резистентностью, приводящей к ухудшению транспорта глюкозы в клетки и подавлению синтеза жирных кислот de novo, наблюдается и резистентность к норадреналину, которая снимается при добавлении в среду культивирования пальмитоил-карнитина. Одной из важных физиологических функций адипоцитов белого жира является способность запасать энергию в виде триглицеридов, необходимую другим тканям при голодании и физической нагрузке [7]. В настоящей работе показано, что преадипоциты, выделенные у мышей с D2T, не способны в условиях культивирования в присутствии глюкозы формировать депо триглицеридов и генерировать Са2+-ответ на НА. Эффекты, по-видимому, связаны с нарушениями в транспорте глюкозы. Транспорт глюкозы в адипоцитах обеспечивается транспортером GLUT4, транслокация которого на плазматическую мембрану инициируется инсулином. При D2T имеет место резистентность к инсулину, которая вызывает нарушения в сигнальном пути IR → IRS → PI3K → PI(4,5)P3 → PKB, связанные с недостаточными фосфорилированием первых четырех компонентов и активацией PKB и оказывающие негативное влияние на транслокацию транспортера GLUT4. Для ряда клеток известно, что транслокация GLUT4 и транспорт глюкозы увеличиваются при активации АМР-киназы [9; 16; 6]. Одним из активаторов АМР-киназы, энергетического сенсора, поддерживающего баланс AMP:ATP соотношения, является пальмитат [2; 5; 14]. Также показано, что такие производные длинноцепочечных жирных кислот, как пальмитоил-карнитин и пальмитоил-КоА, в микромолярных концентрациях стимулируют связывание ‘Н-рианодина и вызывают мобилизацию Са2+ из саркоплазматического ретикулума скелетных мышц млекопитающих. Увеличение [Ca2+]i и AMP (при уменьшении клеточного АТР) приводит к синергичной активации АМР-киназы [4; 8].

Эндоплазматический ретикулум не только играет центральную роль в липидном и белковом биосинтезе, синтезирует почти все секретируемые белки и продуцирует трансмембранные белки и липиды для большинства клеточных органелл, но и играет важную роль в регуляции [Ca2+]i. Как следует из результатов, полученных в данной работе, активация адипоцитов (9DIV), выделенных у животных с диабетом 2-го типа, норадреналином недостаточна для генерации Ca2+ транзитного ответа. Добавление в среду культивирования пальмитоил-карнитина восстанавливало способность адипоцитов генерировать Са2+-ответ на норадреналин и важную физиологическую функцию запасания триглицеридов.

Заключение

В данной работе показано, что наряду с инсулиновой резистентностью в клетках белого жира в условиях ожирения и диабета 2-го типа наблюдается резистентность к адренергической стимуляции. Кальциевый ответ адипоцитов, полученных из тучных животных и мышей с индуцированным диабетом 2-го типа на аппликацию различных концентраций норадреналина, значительно снижен или отсутствует.

Работа выполнена при финансовой поддержке Программы № 7 Президиума РАН (проект № 01201258223); Министерства образования и науки Российской Федерации (ГК 16.512.11.2092, № 01201179771); ФНМ – проект № 01201256033; РФФИ – № 10-04-01306.

Рецензенты:

Новоселов В.И., д.б.н., профессор лаборатории механизмов рецепции, Институт биофизики клетки РАН (ИБК РАН), г. Пущино;

Асланиди К.Б., д.ф.-м.н., лаборатория регуляции внутриклеточных процессов, Институт теоретической и экспериментальной биофизики РАН (ИТЭБ РАН), г. Пущино.

Работа поступила в редакцию 10.01.2013.